diff --git a/utils/open_model_zoo/faster_rcnn_inception_v2_coco/README.md b/utils/open_model_zoo/faster_rcnn_inception_v2_coco/README.md new file mode 100644 index 00000000..a6ede445 --- /dev/null +++ b/utils/open_model_zoo/faster_rcnn_inception_v2_coco/README.md @@ -0,0 +1,6 @@ +# Faster R-CNN with Inception v2 (https://arxiv.org/pdf/1801.04381.pdf) pre-trained on the COCO dataset + +### What is it? +* This application allows you automatically to annotate many various objects on images. +* It uses [Faster RCNN Inception Resnet v2 Atrous Coco Model](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) from [tensorflow detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) +* It can work on CPU (with Tensorflow or OpenVINO) or GPU (with Tensorflow GPU). diff --git a/utils/open_model_zoo/faster_rcnn_inception_v2_coco/interp.py b/utils/open_model_zoo/faster_rcnn_inception_v2_coco/interp.py new file mode 100644 index 00000000..f8a8a602 --- /dev/null +++ b/utils/open_model_zoo/faster_rcnn_inception_v2_coco/interp.py @@ -0,0 +1,19 @@ +threshold = .5 + +for detection in detections: + frame_number = detection['frame_id'] + height = detection['frame_height'] + width = detection['frame_width'] + detection = detection['detections'] + + prediction = detection[0][0] + for obj in prediction: + obj_class = int(obj[1]) + obj_value = obj[2] + if obj_value >= threshold: + x = obj[3] * width + y = obj[4] * height + right = obj[5] * width + bottom = obj[6] * height + + results.add_box(x, y, right, bottom, obj_class, frame_number) diff --git a/utils/open_model_zoo/faster_rcnn_inception_v2_coco/mapping.json b/utils/open_model_zoo/faster_rcnn_inception_v2_coco/mapping.json new file mode 100644 index 00000000..3efdb307 --- /dev/null +++ b/utils/open_model_zoo/faster_rcnn_inception_v2_coco/mapping.json @@ -0,0 +1,84 @@ +{ + "label_map": { + "1": "person", + "2": "bicycle", + "3": "car", + "4": "motorcycle", + "5": "airplane", + "6": "bus", + "7": "train", + "8": "truck", + "9": "boat", + "10": "traffic_light", + "11": "fire_hydrant", + "13": "stop_sign", + "14": "parking_meter", + "15": "bench", + "16": "bird", + "17": "cat", + "18": "dog", + "19": "horse", + "20": "sheep", + "21": "cow", + "22": "elephant", + "23": "bear", + "24": "zebra", + "25": "giraffe", + "27": "backpack", + "28": "umbrella", + "31": "handbag", + "32": "tie", + "33": "suitcase", + "34": "frisbee", + "35": "skis", + "36": "snowboard", + "37": "sports_ball", + "38": "kite", + "39": "baseball_bat", + "40": "baseball_glove", + "41": "skateboard", + "42": "surfboard", + "43": "tennis_racket", + "44": "bottle", + "46": "wine_glass", + "47": "cup", + "48": "fork", + "49": "knife", + "50": "spoon", + "51": "bowl", + "52": "banana", + "53": "apple", + "54": "sandwich", + "55": "orange", + "56": "broccoli", + "57": "carrot", + "58": "hot_dog", + "59": "pizza", + "60": "donut", + "61": "cake", + "62": "chair", + "63": "couch", + "64": "potted_plant", + "65": "bed", + "67": "dining_table", + "70": "toilet", + "72": "tv", + "73": "laptop", + "74": "mouse", + "75": "remote", + "76": "keyboard", + "77": "cell_phone", + "78": "microwave", + "79": "oven", + "80": "toaster", + "81": "sink", + "83": "refrigerator", + "84": "book", + "85": "clock", + "86": "vase", + "87": "scissors", + "88": "teddy_bear", + "89": "hair_drier", + "90": "toothbrush" + } +}