CVAT_HOST=192.168.0.222 docker compose -f docker-compose.yml -f docker-compose.override.yml -f components/serverless/docker-compose.serverless.yml -f components/analytics/docker-compose.analytics.yml up -d --build CVAT_HOST= docker compose -f docker-compose.yml -f docker-compose.override.yml -f components/serverless/docker-compose.serverless.yml down nuctl deploy --project-name cvat --path serverless/pytorch/ultralytics/yolov5_firesmoke_1.0/nuclio/ --volume `pwd`/serverless/common:/opt/nuclio/common --platform local nuctl get fu nuctl del nuctl del projects cvat nuctl create project cvat docker logs nuclio-nuclio-ultralytics-yolov5_firesmoke_1.0 安装nuctl:version = 1.8.14 wget https://github.com/nuclio/nuclio/releases/download//nuctl--linux-amd64 sudo chmod +x nuctl--linux-amd64 sudo ln -sf $(pwd)/nuctl--linux-amd64 /usr/local/bin/nuctl 健康查询: docker exec -t cvat_server python manage.py health_check 创建超级用户: docker exec -it cvat_server bash -ic 'python3 ~/manage.py createsuperuser' 控制代码分支版本: CVAT_VERSION=dev docker compose up -d 安装docker: sudo apt-get update sudo apt-get --no-install-recommends install -y \ apt-transport-https \ ca-certificates \ curl \ gnupg-agent \ software-properties-common curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-repository \ "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) \ stable" sudo apt-get update sudo apt-get --no-install-recommends install -y \ docker-ce docker-ce-cli containerd.io docker-compose-plugin 一般权限使用docker: sudo groupadd docker sudo usermod -aG docker $USER 克隆代码: git clone https://github.com/opencv/cvat cd cvat 以下对于docker的操作慎用,会删掉所有数据样本: 删除所有dangling数据卷(即无用的Volume,僵尸文件) docker volume rm $(docker volume ls -qf dangling=true) 删除所有dangling镜像(即无tag的镜像) docker rmi $(docker images | grep “^” | awk “{print $3}”) 删除所有关闭的容器 docker ps -a | grep Exit | cut -d ’ ’ -f 1 | xargs docker rm 使用--filter标志来查看正在使用的卷的容器: docker ps -a --filter volume=my-vol ___________________________________________________ 问题总结: 1. yolov5这种模型部署,docker会去下载模型,这个没法加代理,所以会很慢,前面出现过过一段时间就好了,应该是这个原因。 2. 自动标注有任何问题,直接看容器的打印,光看网页报错没有作用, docker logs nuclio-nuclio-ultralytics-yolov5 3. 出现docker.host.interl错误时,在8070端口的nuctl,暂停重启下函数,或者重新deploy函数,只是yolov5下yolov5s.pt需要很多时间 4. Error: Request failed with status code 503. "('Connection aborted.', ConnectionResetError(104--看看是不是因为在下载yolov5s.pt