import numpy as np from unittest import TestCase from datumaro.components.extractor import (Extractor, DatasetItem, AnnotationType, Bbox, LabelCategories, ) from datumaro.plugins.yolo_format.importer import YoloImporter from datumaro.plugins.yolo_format.converter import YoloConverter from datumaro.util.test_utils import TestDir, compare_datasets class YoloFormatTest(TestCase): def test_can_save_and_load(self): class TestExtractor(Extractor): def __iter__(self): return iter([ DatasetItem(id=1, subset='train', image=np.ones((8, 8, 3)), annotations=[ Bbox(0, 2, 4, 2, label=2), Bbox(0, 1, 2, 3, label=4), ]), DatasetItem(id=2, subset='train', image=np.ones((10, 10, 3)), annotations=[ Bbox(0, 2, 4, 2, label=2), Bbox(3, 3, 2, 3, label=4), Bbox(2, 1, 2, 3, label=4), ]), DatasetItem(id=3, subset='valid', image=np.ones((8, 8, 3)), annotations=[ Bbox(0, 1, 5, 2, label=2), Bbox(0, 2, 3, 2, label=5), Bbox(0, 2, 4, 2, label=6), Bbox(0, 7, 3, 2, label=7), ]), ]) def categories(self): label_categories = LabelCategories() for i in range(10): label_categories.add('label_' + str(i)) return { AnnotationType.label: label_categories, } with TestDir() as test_dir: source_dataset = TestExtractor() YoloConverter(save_images=True)(source_dataset, test_dir) parsed_dataset = YoloImporter()(test_dir).make_dataset() compare_datasets(self, source_dataset, parsed_dataset)