# Copyright (C) 2021 Intel Corporation # # SPDX-License-Identifier: MIT import torch import numpy as np import cv2 import os from isegm.inference import utils from isegm.inference.predictors import get_predictor from isegm.inference.clicker import Clicker, Click def convert_mask_to_polygon(mask): mask = np.array(mask, dtype=np.uint8) cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX) contours = None if int(cv2.__version__.split('.')[0]) > 3: contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0] else: contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1] contours = max(contours, key=lambda arr: arr.size) if contours.shape.count(1): contours = np.squeeze(contours) if contours.size < 3 * 2: raise Exception('Less then three point have been detected. Can not build a polygon.') polygon = [] for point in contours: polygon.append([int(point[0]), int(point[1])]) return polygon class ModelHandler: def __init__(self): torch.backends.cudnn.deterministic = True base_dir = os.path.abspath(os.environ.get("MODEL_PATH", "/opt/nuclio/hrnet")) model_path = os.path.join(base_dir) self.net = None self.device = 'cuda' if torch.cuda.is_available() else 'cpu' checkpoint_path = utils.find_checkpoint(model_path, "coco_lvis_h18_itermask.pth") self.net = utils.load_is_model(checkpoint_path, self.device) def handle(self, image, pos_points, neg_points, threshold): image_nd = np.array(image) clicker = Clicker() for x, y in pos_points: click = Click(is_positive=True, coords=(y, x)) clicker.add_click(click) for x, y in neg_points: click = Click(is_positive=False, coords=(y, x)) clicker.add_click(click) predictor = get_predictor(self.net, 'NoBRS', device=self.device, prob_thresh=0.49) predictor.set_input_image(image_nd) object_prob = predictor.get_prediction(clicker) if self.device == 'cuda': torch.cuda.empty_cache() object_mask = object_prob > threshold polygon = convert_mask_to_polygon(object_mask) return polygon