# Quick start guide ## Contents - [Installation](#installation) - [Interfaces](#interfaces) - [Supported dataset formats and annotations](#formats-support) - [Command line workflow](#command-line-workflow) - [Create a project](#create-project) - [Add and remove data](#add-and-remove-data) - [Import a project](#import-project) - [Extract a subproject](#extract-subproject) - [Merge projects](#merge-project) - [Export a project](#export-project) - [Compare projects](#compare-projects) - [Get project info](#get-project-info) - [Register a model](#register-model) - [Run inference](#run-inference) - [Run inference explanation](#explain-inference) - [Links](#links) ## Installation ### Prerequisites - Python (3.5+) - OpenVINO (optional) ### Installation steps Optionally, set up a virtual environment: ``` bash python -m pip install virtualenv python -m virtualenv venv . venv/bin/activate ``` Install Datumaro: ``` bash pip install 'git+https://github.com/opencv/cvat#egg=datumaro&subdirectory=datumaro' ``` > You can change the installation branch with `.../cvat@#egg...` > Also note `--force-reinstall` parameter in this case. ## Interfaces As a standalone tool: ``` bash datum --help ``` As a python module: > The directory containing Datumaro should be in the `PYTHONPATH` > environment variable or `cvat/datumaro/` should be the current directory. ``` bash python -m datumaro --help python datumaro/ --help python datum.py --help ``` As a python library: ``` python import datumaro ``` ## Formats support List of supported formats: - COCO (`image_info`, `instances`, `person_keypoints`, `captions`, `labels`*) - [Format specification](http://cocodataset.org/#format-data) - `labels` are our extension - like `instances` with only `category_id` - PASCAL VOC (`classification`, `detection`, `segmentation` (class, instances), `action_classification`, `person_layout`) - [Format specification](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html) - YOLO (`bboxes`) - [Format specification](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) - TF Detection API (`bboxes`, `masks`) - Format specifications: [bboxes](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md), [masks](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/instance_segmentation.md) - CVAT - [Format specification](https://github.com/opencv/cvat/blob/develop/cvat/apps/documentation/xml_format.md) List of supported annotation types: - Labels - Bounding boxes - Polygons - Polylines - (Key-)Points - Captions - Masks ## Command line workflow > **Note**: command invocation syntax is subject to change, > **always refer to command --help output** The key object is the Project. The Project is a combination of a Project's own dataset, a number of external data sources and an environment. An empty Project can be created by `project create` command, an existing dataset can be imported with `project import` command. A typical way to obtain projects is to export tasks in CVAT UI. Available CLI commands: ![CLI design doc](images/cli_design.png) If you want to interact with models, you need to add them to project first. ### Import project This command creates a Project from an existing dataset. Supported formats are listed in the command help. In Datumaro dataset formats are supported by Extractors and Importers. An Extractor produces a list of dataset items corresponding to the dataset. An Importer creates a Project from the data source location. It is possible to add a custom Extractor and Importer. To do this, you need to put an Extractor and Importer implementation scripts to `/.datumaro/extractors` and `/.datumaro/importers`. Usage: ``` bash datum project import --help datum project import \ -i \ -o \ -f ``` Example: create a project from COCO-like dataset ``` bash datum project import \ -i /home/coco_dir \ -o /home/project_dir \ -f coco ``` An _MS COCO_-like dataset should have the following directory structure: ``` COCO/ ├── annotations/ │   ├── instances_val2017.json │   ├── instances_train2017.json ├── images/ │   ├── val2017 │   ├── train2017 ``` Everything after the last `_` is considered a subset name in the COCO format. ### Create project The command creates an empty project. Once a Project is created, there are a few options to interact with it. Usage: ``` bash datum project create --help datum project create \ -o ``` Example: create an empty project `my_dataset` ``` bash datum project create -o my_dataset/ ``` ### Add and remove data A Project can be attached to a number of external Data Sources. Each Source describes a way to produce dataset items. A Project combines dataset items from all the sources and its own dataset into one composite dataset. You can manage project sources by commands in the `source` command line context. Datasets come in a wide variety of formats. Each dataset format defines its own data structure and rules on how to interpret the data. For example, the following data structure is used in COCO format: ``` /dataset/ - /images/.jpg - /annotations/ ``` In Datumaro dataset formats are supported by Extractors. An Extractor produces a list of dataset items corresponding to the dataset. It is possible to add a custom Extractor. To do this, you need to put an Extractor definition script to `/.datumaro/extractors`. Usage: ``` bash datum source add --help datum source remove --help datum source add \ path \ -p \ -n datum source remove \ -p \ -n ``` Example: create a project from a bunch of different annotations and images, and generate TFrecord for TF Detection API for model training ``` bash datum project create # 'default' is the name of the subset below datum source add path -f coco_instances datum source add path -f cvat datum source add path -f voc_detection datum source add path -f datumaro datum source add path -f image_dir datum project export -f tf_detection_api ``` ### Extract subproject This command allows to create a sub-Project from a Project. The new project includes only items satisfying some condition. [XPath](https://devhints.io/xpath) is used as query format. There are several filtering modes available ('-m/--mode' parameter). Supported modes: - 'i', 'items' - 'a', 'annotations' - 'i+a', 'a+i', 'items+annotations', 'annotations+items' When filtering annotations, use the 'items+annotations' mode to point that annotation-less dataset items should be removed. To select an annotation, write an XPath that returns 'annotation' elements (see examples). Usage: ``` bash datum project extract --help datum project extract \ -p \ -o \ -e '' ``` Example: extract a dataset with only images which width < height ``` bash datum project extract \ -p test_project \ -o test_project-extract \ -e '/item[image/width < image/height]' ``` Example: extract a dataset with only large annotations of class `cat` and any non-`persons` ``` bash datum project extract \ -p test_project \ -o test_project-extract \ --mode annotations -e '/item/annotation[(label="cat" and area > 999.5) or label!="person"]' ``` Example: extract a dataset with only occluded annotations, remove empty images ``` bash datum project extract \ -p test_project \ -o test_project-extract \ -m i+a -e '/item/annotation[occluded="True"]' ``` Item representations are available with `--dry-run` parameter: ``` xml 290768 minival2014 612 612 3 80154 bbox 39 264.59 150.25 11.199999999999989 42.31 473.87199999999956 669839 bbox 41 163.58 191.75 76.98999999999998 73.63 5668.773699999998 ... ``` ### Merge projects This command combines multiple Projects into one. Usage: ``` bash datum project merge --help datum project merge \ -p \ -o \ ``` Example: update annotations in the `first_project` with annotations from the `second_project` and save the result as `merged_project` ``` bash datum project merge \ -p first_project \ -o merged_project \ second_project ``` ### Export project This command exports a Project in some format. Supported formats are listed in the command help. In Datumaro dataset formats are supported by Converters. A Converter produces a dataset of a specific format from dataset items. It is possible to add a custom Converter. To do this, you need to put a Converter definition script to /.datumaro/converters. Usage: ``` bash datum project export --help datum project export \ -p \ -o \ -f \ [-- ] ``` Example: save project as VOC-like dataset, include images ``` bash datum project export \ -p test_project \ -o test_project-export \ -f voc \ -- --save-images ``` ### Get project info This command outputs project status information. Usage: ``` bash datum project info --help datum project info \ -p ``` Example: ``` bash datum project info -p /test_project Project: name: test_project2 location: /test_project Sources: source 'instances_minival2014': format: coco_instances url: /coco_like/annotations/instances_minival2014.json Dataset: length: 5000 categories: label label: count: 80 labels: person, bicycle, car, motorcycle (and 76 more) subsets: minival2014 subset 'minival2014': length: 5000 categories: label label: count: 80 labels: person, bicycle, car, motorcycle (and 76 more) ``` ### Register model Supported models: - OpenVINO - Custom models via custom `launchers` Usage: ``` bash datum model add --help ``` Example: register an OpenVINO model A model consists of a graph description and weights. There is also a script used to convert model outputs to internal data structures. ``` bash datum project create datum model add \ -n openvino \ -d -w -i ``` Interpretation script for an OpenVINO detection model (`convert.py`): ``` python from datumaro.components.extractor import * max_det = 10 conf_thresh = 0.1 def process_outputs(inputs, outputs): # inputs = model input, array or images, shape = (N, C, H, W) # outputs = model output, shape = (N, 1, K, 7) # results = conversion result, [ [ Annotation, ... ], ... ] results = [] for input, output in zip(inputs, outputs): input_height, input_width = input.shape[:2] detections = output[0] image_results = [] for i, det in enumerate(detections): label = int(det[1]) conf = det[2] if conf <= conf_thresh: continue x = max(int(det[3] * input_width), 0) y = max(int(det[4] * input_height), 0) w = min(int(det[5] * input_width - x), input_width) h = min(int(det[6] * input_height - y), input_height) image_results.append(Bbox(x, y, w, h, label=label, attributes={'score': conf} )) results.append(image_results[:max_det]) return results def get_categories(): # Optionally, provide output categories - label map etc. # Example: label_categories = LabelCategories() label_categories.add('person') label_categories.add('car') return { AnnotationType.label: label_categories } ``` ### Run model This command applies model to dataset images and produces a new project. Usage: ``` bash datum model run --help datum model run \ -p \ -m \ -o ``` Example: launch inference on a dataset ``` bash datum project import <...> datum model add mymodel <...> datum model run -m mymodel -o inference ``` ### Compare projects The command compares two datasets and saves the results in the specified directory. The current project is considered to be "ground truth". ``` bash datum project diff --help datum project diff -o ``` Example: compare a dataset with model inference ``` bash datum project import <...> datum model add mymodel <...> datum project transform <...> -o inference datum project diff inference -o diff ``` ### Explain inference Usage: ``` bash datum explain --help datum explain \ -m \ -o \ -t \ \ ``` Example: run inference explanation on a single image with visualization ``` bash datum project create <...> datum model add mymodel <...> datum explain \ -m mymodel \ -t 'image.png' \ rise \ -s 1000 --progressive ``` ## Links - [TensorFlow detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) - [How to convert model to OpenVINO format](https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_Object_Detection_API_Models.html) - [Model conversion script example](https://github.com/opencv/cvat/blob/3e09503ba6c6daa6469a6c4d275a5a8b168dfa2c/components/tf_annotation/install.sh#L23)