launcher: framework: pytorch module: samplenet.SampLeNet python_path: '.' checkpoint: 'samplenet.pth' # launcher returns raw result, so it should be converted # to an appropriate representation with adapter adapter: type: classification labels: - label1 - label2 - label3 - label4 - label5 - label6 - label7 - label8 - label9 - label10 # list of preprocessing, applied to each image during validation # order of entries matters preprocessing: # resize input image to topology input size # you may specify size to which image should be resized # via dst_width, dst_height fields - type: resize size: 32 # topology is trained on RGB images, but Datumaro reads in BGR # so it must be converted to RGB - type: bgr_to_rgb # dataset mean and standard deviation - type: normalization mean: (125.307, 122.961, 113.8575) std: (51.5865, 50.847, 51.255)