import os import sys import json import argparse import random import logging import numpy as np import cv2 work_dir = os.path.dirname(os.path.abspath(__file__)) cvat_dir = os.path.join(work_dir, '..', '..') sys.path.insert(0, cvat_dir) from cvat.apps.auto_annotation.inference import run_inference_engine_annotation def _get_kwargs(): parser = argparse.ArgumentParser() parser.add_argument('--py', required=True, help='Path to the python interpt file') parser.add_argument('--xml', required=True, help='Path to the xml file') parser.add_argument('--bin', required=True, help='Path to the bin file') parser.add_argument('--json', required=True, help='Path to the JSON mapping file') parser.add_argument('--restricted', dest='restricted', action='store_true') parser.add_argument('--unrestricted', dest='restricted', action='store_false') parser.add_argument('--image-files', nargs='*', help='Paths to image files you want to test') parser.add_argument('--show-images', action='store_true', help='Show the results of the annotation in a window') parser.add_argument('--show-image-delay', default=0, type=int, help='Displays the images for a set duration in milliseconds, default is until a key is pressed') return vars(parser.parse_args()) def random_color(): rgbl=[255,0,0] random.shuffle(rgbl) return tuple(rgbl) def pairwise(iterable): result = [] for i in range(0, len(iterable) - 1, 2): result.append((iterable[i], iterable[i+1])) return np.array(result, dtype=np.int32) def main(): kwargs = _get_kwargs() py_file = kwargs['py'] bin_file = kwargs['bin'] mapping_file = kwargs['json'] xml_file = kwargs['xml'] if not os.path.isfile(py_file): logging.critical('Py file not found! Check the path') return if not os.path.isfile(bin_file): logging.critical('Bin file is not found! Check path!') return if not os.path.isfile(xml_file): logging.critical('XML File not found! Check path!') return if not os.path.isfile(mapping_file): logging.critical('JSON file is not found! Check path!') return with open(mapping_file) as json_file: try: mapping = json.load(json_file) except json.decoder.JSONDecodeError: logging.critical('JSON file not able to be parsed! Check file') return try: mapping = mapping['label_map'] except KeyError: logging.critical("JSON Mapping file must contain key `label_map`!") logging.critical("Exiting") return mapping = {int(k): v for k, v in mapping.items()} restricted = kwargs['restricted'] image_files = kwargs.get('image_files') if image_files: image_data = [cv2.imread(f) for f in image_files] else: test_image = np.ones((1024, 1980, 3), np.uint8) * 255 image_data = [test_image,] attribute_spec = {} results = run_inference_engine_annotation(image_data, xml_file, bin_file, mapping, attribute_spec, py_file, restricted=restricted) logging.warning('Program didn\'t have any errors.') show_images = kwargs.get('show_images', False) if show_images: if image_files is None: logging.critical("Warning, no images provided!") logging.critical('Exiting without presenting results') return if not results['shapes']: logging.warning(str(results)) logging.critical("No objects detected!") return show_image_delay = kwargs['show_image_delay'] for index, data in enumerate(image_data): for detection in results['shapes']: if not detection['frame'] == index: continue points = detection['points'] # Cv2 doesn't like floats for drawing points = [int(p) for p in points] color = random_color() if detection['type'] == 'rectangle': cv2.rectangle(data, (points[0], points[1]), (points[2], points[3]), color, 3) elif detection['type'] in ('polygon', 'polyline'): # polylines is picky about datatypes points = pairwise(points) cv2.polylines(data, [points], 1, color) cv2.imshow(str(index), data) cv2.waitKey(show_image_delay) cv2.destroyWindow(str(index)) if __name__ == '__main__': main()