You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
15 KiB
Python
416 lines
15 KiB
Python
import logging as log
|
|
import numpy as np
|
|
|
|
from unittest import TestCase
|
|
from datumaro.components.project import Dataset
|
|
from datumaro.components.extractor import (Extractor, DatasetItem,
|
|
Mask, Polygon, PolyLine, Points, Bbox, Label,
|
|
LabelCategories, MaskCategories, AnnotationType
|
|
)
|
|
import datumaro.util.mask_tools as mask_tools
|
|
import datumaro.plugins.transforms as transforms
|
|
from datumaro.util.test_utils import compare_datasets
|
|
|
|
|
|
class TransformsTest(TestCase):
|
|
def test_reindex(self):
|
|
class SrcExtractor(Extractor):
|
|
def __iter__(self):
|
|
return iter([
|
|
DatasetItem(id=10),
|
|
DatasetItem(id=10, subset='train'),
|
|
DatasetItem(id='a', subset='val'),
|
|
])
|
|
|
|
class DstExtractor(Extractor):
|
|
def __iter__(self):
|
|
return iter([
|
|
DatasetItem(id=5),
|
|
DatasetItem(id=6, subset='train'),
|
|
DatasetItem(id=7, subset='val'),
|
|
])
|
|
|
|
actual = transforms.Reindex(SrcExtractor(), start=5)
|
|
compare_datasets(self, DstExtractor(), actual)
|
|
|
|
def test_mask_to_polygons(self):
|
|
class SrcExtractor(Extractor):
|
|
def __iter__(self):
|
|
items = [
|
|
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
|
|
[0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
|
|
[0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]),
|
|
),
|
|
]
|
|
),
|
|
]
|
|
return iter(items)
|
|
|
|
class DstExtractor(Extractor):
|
|
def __iter__(self):
|
|
return iter([
|
|
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
|
|
annotations=[
|
|
Polygon([3.0, 2.5, 1.0, 0.0, 3.5, 0.0, 3.0, 2.5]),
|
|
Polygon([5.0, 3.5, 4.5, 0.0, 8.0, 0.0, 5.0, 3.5]),
|
|
]
|
|
),
|
|
])
|
|
|
|
actual = transforms.MasksToPolygons(SrcExtractor())
|
|
compare_datasets(self, DstExtractor(), actual)
|
|
|
|
def test_mask_to_polygons_small_polygons_message(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 0, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 0],
|
|
]),
|
|
),
|
|
]
|
|
),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 10, 3))), ])
|
|
|
|
with self.assertLogs(level=log.DEBUG) as logs:
|
|
actual = transforms.MasksToPolygons(source_dataset)
|
|
|
|
compare_datasets(self, target_dataset, actual)
|
|
self.assertRegex('\n'.join(logs.output), 'too small polygons')
|
|
|
|
def test_polygons_to_masks(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
|
|
annotations=[
|
|
Polygon([0, 0, 4, 0, 4, 4]),
|
|
Polygon([5, 0, 9, 0, 5, 5]),
|
|
]
|
|
),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 0, 0, 0, 0, 1, 1, 1, 1, 0],
|
|
[0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
|
|
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]),
|
|
),
|
|
Mask(np.array([
|
|
[0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
]),
|
|
),
|
|
]
|
|
),
|
|
])
|
|
|
|
actual = transforms.PolygonsToMasks(source_dataset)
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_crop_covered_segments(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
# The mask is partially covered by the polygon
|
|
Mask(np.array([
|
|
[0, 0, 1, 1, 1],
|
|
[0, 0, 1, 1, 1],
|
|
[1, 1, 1, 1, 1],
|
|
[1, 1, 1, 0, 0],
|
|
[1, 1, 1, 0, 0]],
|
|
),
|
|
z_order=0),
|
|
Polygon([1, 1, 4, 1, 4, 4, 1, 4],
|
|
z_order=1),
|
|
]
|
|
),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 0, 1, 1, 1],
|
|
[0, 0, 0, 0, 1],
|
|
[1, 0, 0, 0, 1],
|
|
[1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0]],
|
|
),
|
|
z_order=0),
|
|
Polygon([1, 1, 4, 1, 4, 4, 1, 4],
|
|
z_order=1),
|
|
]
|
|
),
|
|
])
|
|
|
|
actual = transforms.CropCoveredSegments(source_dataset)
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_merge_instance_segments(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 0, 1, 1, 1],
|
|
[0, 0, 0, 0, 1],
|
|
[1, 0, 0, 0, 1],
|
|
[1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0]],
|
|
),
|
|
z_order=0, group=1),
|
|
Polygon([1, 1, 4, 1, 4, 4, 1, 4],
|
|
z_order=1, group=1),
|
|
Polygon([0, 0, 0, 2, 2, 2, 2, 0],
|
|
z_order=1),
|
|
]
|
|
),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 0, 1, 1, 1],
|
|
[0, 1, 1, 1, 1],
|
|
[1, 1, 1, 1, 1],
|
|
[1, 1, 1, 1, 0],
|
|
[1, 1, 1, 0, 0]],
|
|
),
|
|
z_order=0, group=1),
|
|
Mask(np.array([
|
|
[1, 1, 0, 0, 0],
|
|
[1, 1, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
),
|
|
z_order=1),
|
|
]
|
|
),
|
|
])
|
|
|
|
actual = transforms.MergeInstanceSegments(source_dataset,
|
|
include_polygons=True)
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_map_subsets(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, subset='a'),
|
|
DatasetItem(id=2, subset='b'),
|
|
DatasetItem(id=3, subset='c'),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, subset=''),
|
|
DatasetItem(id=2, subset='a'),
|
|
DatasetItem(id=3, subset='c'),
|
|
])
|
|
|
|
actual = transforms.MapSubsets(source_dataset,
|
|
{ 'a': '', 'b': 'a' })
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_shapes_to_boxes(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[0, 0, 1, 1, 1],
|
|
[0, 0, 0, 0, 1],
|
|
[1, 0, 0, 0, 1],
|
|
[1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0]],
|
|
), id=1),
|
|
Polygon([1, 1, 4, 1, 4, 4, 1, 4], id=2),
|
|
PolyLine([1, 1, 2, 1, 2, 2, 1, 2], id=3),
|
|
Points([2, 2, 4, 2, 4, 4, 2, 4], id=4),
|
|
]
|
|
),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Bbox(0, 0, 4, 4, id=1),
|
|
Bbox(1, 1, 3, 3, id=2),
|
|
Bbox(1, 1, 1, 1, id=3),
|
|
Bbox(2, 2, 2, 2, id=4),
|
|
]
|
|
),
|
|
])
|
|
|
|
actual = transforms.ShapesToBoxes(source_dataset)
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_id_from_image(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image='path.jpg'),
|
|
DatasetItem(id=2),
|
|
])
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id='path', image='path.jpg'),
|
|
DatasetItem(id=2),
|
|
])
|
|
|
|
actual = transforms.IdFromImageName(source_dataset)
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_boxes_to_masks(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Bbox(0, 0, 3, 3, z_order=1),
|
|
Bbox(0, 0, 3, 1, z_order=2),
|
|
Bbox(0, 2, 3, 1, z_order=3),
|
|
]
|
|
),
|
|
])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
|
|
annotations=[
|
|
Mask(np.array([
|
|
[1, 1, 1, 0, 0],
|
|
[1, 1, 1, 0, 0],
|
|
[1, 1, 1, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
),
|
|
z_order=1),
|
|
Mask(np.array([
|
|
[1, 1, 1, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
),
|
|
z_order=2),
|
|
Mask(np.array([
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
),
|
|
z_order=3),
|
|
]
|
|
),
|
|
])
|
|
|
|
actual = transforms.BoxesToMasks(source_dataset)
|
|
compare_datasets(self, target_dataset, actual)
|
|
|
|
def test_random_split(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, subset="a"),
|
|
DatasetItem(id=2, subset="a"),
|
|
DatasetItem(id=3, subset="b"),
|
|
DatasetItem(id=4, subset="b"),
|
|
DatasetItem(id=5, subset="b"),
|
|
DatasetItem(id=6, subset=""),
|
|
DatasetItem(id=7, subset=""),
|
|
])
|
|
|
|
actual = transforms.RandomSplit(source_dataset, splits=[
|
|
('train', 4.0 / 7.0),
|
|
('test', 3.0 / 7.0),
|
|
])
|
|
|
|
self.assertEqual(4, len(actual.get_subset('train')))
|
|
self.assertEqual(3, len(actual.get_subset('test')))
|
|
|
|
def test_random_split_gives_error_on_wrong_ratios(self):
|
|
source_dataset = Dataset.from_iterable([DatasetItem(id=1)])
|
|
|
|
with self.assertRaises(Exception):
|
|
transforms.RandomSplit(source_dataset, splits=[
|
|
('train', 0.5),
|
|
('test', 0.7),
|
|
])
|
|
|
|
with self.assertRaises(Exception):
|
|
transforms.RandomSplit(source_dataset, splits=[])
|
|
|
|
with self.assertRaises(Exception):
|
|
transforms.RandomSplit(source_dataset, splits=[
|
|
('train', -0.5),
|
|
('test', 1.5),
|
|
])
|
|
|
|
def test_remap_labels(self):
|
|
src_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, annotations=[
|
|
# Should be remapped
|
|
Label(1),
|
|
Bbox(1, 2, 3, 4, label=2),
|
|
Mask(image=np.array([1]), label=3),
|
|
|
|
# Should be kept
|
|
Polygon([1, 1, 2, 2, 3, 4], label=4),
|
|
PolyLine([1, 3, 4, 2, 5, 6])
|
|
])
|
|
], categories={
|
|
AnnotationType.label: LabelCategories.from_iterable(
|
|
'label%s' % i for i in range(5)),
|
|
AnnotationType.mask: MaskCategories(
|
|
colormap=mask_tools.generate_colormap(5)),
|
|
})
|
|
|
|
dst_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, annotations=[
|
|
Label(1),
|
|
Bbox(1, 2, 3, 4, label=0),
|
|
Mask(image=np.array([1]), label=1),
|
|
|
|
Polygon([1, 1, 2, 2, 3, 4], label=2),
|
|
PolyLine([1, 3, 4, 2, 5, 6], label=None)
|
|
]),
|
|
], categories={
|
|
AnnotationType.label: LabelCategories.from_iterable(
|
|
['label0', 'label9', 'label4']),
|
|
AnnotationType.mask: MaskCategories(colormap={
|
|
k: v for k, v in mask_tools.generate_colormap(5).items()
|
|
if k in { 0, 1, 3, 4 }
|
|
})
|
|
})
|
|
|
|
actual = transforms.RemapLabels(src_dataset, mapping={
|
|
'label1': 'label9',
|
|
'label2': 'label0',
|
|
'label3': 'label9',
|
|
}, default='keep')
|
|
|
|
compare_datasets(self, dst_dataset, actual)
|
|
|
|
def test_remap_labels_delete_unspecified(self):
|
|
source_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1, annotations=[ Label(0) ])
|
|
], categories=['label0'])
|
|
|
|
target_dataset = Dataset.from_iterable([
|
|
DatasetItem(id=1),
|
|
], categories=[])
|
|
|
|
actual = transforms.RemapLabels(source_dataset,
|
|
mapping={}, default='delete')
|
|
|
|
compare_datasets(self, target_dataset, actual)
|