You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
5.1 KiB
Python

from unittest import TestCase
from datumaro.components.extractor import DatasetItem, Label, Bbox
from datumaro.components.comparator import Comparator
class DiffTest(TestCase):
def test_no_bbox_diff_with_same_item(self):
detections = 3
anns = [
Bbox(i * 10, 10, 10, 10, label=i,
attributes={'score': (1.0 + i) / detections}) \
for i in range(detections)
]
item = DatasetItem(id=0, annotations=anns)
iou_thresh = 0.5
conf_thresh = 0.5
comp = Comparator(
iou_threshold=iou_thresh, conf_threshold=conf_thresh)
result = comp.compare_item_bboxes(item, item)
matches, mispred, a_greater, b_greater = result
self.assertEqual(0, len(mispred))
self.assertEqual(0, len(a_greater))
self.assertEqual(0, len(b_greater))
self.assertEqual(len([it for it in item.annotations \
if conf_thresh < it.attributes['score']]),
len(matches))
for a_bbox, b_bbox in matches:
self.assertLess(iou_thresh, a_bbox.iou(b_bbox))
self.assertEqual(a_bbox.label, b_bbox.label)
self.assertLess(conf_thresh, a_bbox.attributes['score'])
self.assertLess(conf_thresh, b_bbox.attributes['score'])
def test_can_find_bbox_with_wrong_label(self):
detections = 3
class_count = 2
item1 = DatasetItem(id=1, annotations=[
Bbox(i * 10, 10, 10, 10, label=i,
attributes={'score': (1.0 + i) / detections}) \
for i in range(detections)
])
item2 = DatasetItem(id=2, annotations=[
Bbox(i * 10, 10, 10, 10, label=(i + 1) % class_count,
attributes={'score': (1.0 + i) / detections}) \
for i in range(detections)
])
iou_thresh = 0.5
conf_thresh = 0.5
comp = Comparator(
iou_threshold=iou_thresh, conf_threshold=conf_thresh)
result = comp.compare_item_bboxes(item1, item2)
matches, mispred, a_greater, b_greater = result
self.assertEqual(len([it for it in item1.annotations \
if conf_thresh < it.attributes['score']]),
len(mispred))
self.assertEqual(0, len(a_greater))
self.assertEqual(0, len(b_greater))
self.assertEqual(0, len(matches))
for a_bbox, b_bbox in mispred:
self.assertLess(iou_thresh, a_bbox.iou(b_bbox))
self.assertEqual((a_bbox.label + 1) % class_count, b_bbox.label)
self.assertLess(conf_thresh, a_bbox.attributes['score'])
self.assertLess(conf_thresh, b_bbox.attributes['score'])
def test_can_find_missing_boxes(self):
detections = 3
class_count = 2
item1 = DatasetItem(id=1, annotations=[
Bbox(i * 10, 10, 10, 10, label=i,
attributes={'score': (1.0 + i) / detections}) \
for i in range(detections) if i % 2 == 0
])
item2 = DatasetItem(id=2, annotations=[
Bbox(i * 10, 10, 10, 10, label=(i + 1) % class_count,
attributes={'score': (1.0 + i) / detections}) \
for i in range(detections) if i % 2 == 1
])
iou_thresh = 0.5
conf_thresh = 0.5
comp = Comparator(
iou_threshold=iou_thresh, conf_threshold=conf_thresh)
result = comp.compare_item_bboxes(item1, item2)
matches, mispred, a_greater, b_greater = result
self.assertEqual(0, len(mispred))
self.assertEqual(len([it for it in item1.annotations \
if conf_thresh < it.attributes['score']]),
len(a_greater))
self.assertEqual(len([it for it in item2.annotations \
if conf_thresh < it.attributes['score']]),
len(b_greater))
self.assertEqual(0, len(matches))
def test_no_label_diff_with_same_item(self):
detections = 3
anns = [
Label(i, attributes={'score': (1.0 + i) / detections}) \
for i in range(detections)
]
item = DatasetItem(id=1, annotations=anns)
conf_thresh = 0.5
comp = Comparator(conf_threshold=conf_thresh)
result = comp.compare_item_labels(item, item)
matches, a_greater, b_greater = result
self.assertEqual(0, len(a_greater))
self.assertEqual(0, len(b_greater))
self.assertEqual(len([it for it in item.annotations \
if conf_thresh < it.attributes['score']]),
len(matches))
def test_can_find_wrong_label(self):
item1 = DatasetItem(id=1, annotations=[
Label(0),
Label(1),
Label(2),
])
item2 = DatasetItem(id=2, annotations=[
Label(2),
Label(3),
Label(4),
])
conf_thresh = 0.5
comp = Comparator(conf_threshold=conf_thresh)
result = comp.compare_item_labels(item1, item2)
matches, a_greater, b_greater = result
self.assertEqual(2, len(a_greater))
self.assertEqual(2, len(b_greater))
self.assertEqual(1, len(matches))