You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

327 lines
11 KiB
Python

# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
# The Multiple Object Tracking Benchmark challenge format support
# Format description: https://arxiv.org/pdf/1906.04567.pdf
# Another description: https://motchallenge.net/instructions
from collections import OrderedDict
import csv
from enum import Enum
import logging as log
import os
import os.path as osp
from datumaro.components.extractor import (SourceExtractor,
DatasetItem, AnnotationType, Bbox, LabelCategories
)
from datumaro.components.extractor import Importer
from datumaro.components.converter import Converter
from datumaro.components.cli_plugin import CliPlugin
from datumaro.util import cast
from datumaro.util.image import Image, save_image
MotLabel = Enum('MotLabel', [
('pedestrian', 1),
('person on vehicle', 2),
('car', 3),
('bicycle', 4),
('motorbike', 5),
('non motorized vehicle', 6),
('static person', 7),
('distractor', 8),
('occluder', 9),
('occluder on the ground', 10),
('occluder full', 11),
('reflection', 12),
])
class MotPath:
IMAGE_DIR = 'img1'
SEQINFO_FILE = 'seqinfo.ini'
LABELS_FILE = 'labels.txt'
GT_FILENAME = 'gt.txt'
DET_FILENAME = 'det.txt'
IMAGE_EXT = '.jpg'
FIELDS = [
'frame_id',
'track_id',
'x',
'y',
'w',
'h',
'confidence', # or 'not ignored' flag for GT anns
'class_id',
'visibility'
]
class MotSeqExtractor(SourceExtractor):
def __init__(self, path, labels=None, occlusion_threshold=0, is_gt=None):
super().__init__()
assert osp.isfile(path)
seq_root = osp.dirname(osp.dirname(path))
self._image_dir = ''
if osp.isdir(osp.join(seq_root, MotPath.IMAGE_DIR)):
self._image_dir = osp.join(seq_root, MotPath.IMAGE_DIR)
seq_info = osp.join(seq_root, MotPath.SEQINFO_FILE)
if osp.isfile(seq_info):
seq_info = self._parse_seq_info(seq_info)
self._image_dir = osp.join(seq_root, seq_info['imdir'])
else:
seq_info = None
self._seq_info = seq_info
self._occlusion_threshold = float(occlusion_threshold)
assert is_gt in {None, True, False}
if is_gt is None:
if osp.basename(path) == MotPath.DET_FILENAME:
is_gt = False
else:
is_gt = True
self._is_gt = is_gt
if labels is None:
if osp.isfile(osp.join(seq_root, MotPath.LABELS_FILE)):
labels = osp.join(seq_root, MotPath.LABELS_FILE)
else:
labels = [lbl.name for lbl in MotLabel]
if isinstance(labels, str):
labels = self._parse_labels(labels)
elif isinstance(labels, list):
assert all(isinstance(lbl, str) for lbl in labels), labels
else:
raise TypeError("Unexpected type of 'labels' argument: %s" % labels)
self._categories = self._load_categories(labels)
self._items = self._load_items(path)
def categories(self):
return self._categories
def __iter__(self):
for item in self._items.values():
yield item
def __len__(self):
return len(self._items)
@staticmethod
def _parse_labels(path):
with open(path, encoding='utf-8') as labels_file:
return [s.strip() for s in labels_file]
def _load_categories(self, labels):
attributes = ['track_id']
if self._is_gt:
attributes += ['occluded', 'visibility', 'ignored']
else:
attributes += ['score']
label_cat = LabelCategories(attributes=attributes)
for label in labels:
label_cat.add(label)
return { AnnotationType.label: label_cat }
def _load_items(self, path):
labels_count = len(self._categories[AnnotationType.label].items)
items = OrderedDict()
if self._seq_info:
for frame_id in range(self._seq_info['seqlength']):
items[frame_id] = DatasetItem(
id=frame_id,
subset=self._subset,
image=Image(
path=osp.join(self._image_dir,
'%06d%s' % (frame_id, self._seq_info['imext'])),
size=(self._seq_info['imheight'], self._seq_info['imwidth'])
)
)
elif osp.isdir(self._image_dir):
for p in os.listdir(self._image_dir):
if p.endswith(MotPath.IMAGE_EXT):
frame_id = int(osp.splitext(p)[0])
items[frame_id] = DatasetItem(
id=frame_id,
subset=self._subset,
image=osp.join(self._image_dir, p),
)
with open(path, newline='', encoding='utf-8') as csv_file:
# NOTE: Different MOT files have different count of fields
# (7, 9 or 10). This is handled by reader:
# - all extra fields go to a separate field
# - all unmet fields have None values
for row in csv.DictReader(csv_file, fieldnames=MotPath.FIELDS):
frame_id = int(row['frame_id'])
item = items.get(frame_id)
if item is None:
item = DatasetItem(id=frame_id, subset=self._subset)
annotations = item.annotations
x, y = float(row['x']), float(row['y'])
w, h = float(row['w']), float(row['h'])
label_id = row.get('class_id')
if label_id and label_id != '-1':
label_id = int(label_id) - 1
assert label_id < labels_count, label_id
else:
label_id = None
attributes = {}
# Annotations for detection task are not related to any track
track_id = int(row['track_id'])
if 0 < track_id:
attributes['track_id'] = track_id
confidence = cast(row.get('confidence'), float, 1)
visibility = cast(row.get('visibility'), float, 1)
if self._is_gt:
attributes['visibility'] = visibility
attributes['occluded'] = \
visibility <= self._occlusion_threshold
attributes['ignored'] = confidence == 0
else:
attributes['score'] = float(confidence)
annotations.append(Bbox(x, y, w, h, label=label_id,
attributes=attributes))
items[frame_id] = item
return items
@classmethod
def _parse_seq_info(cls, path):
fields = {}
with open(path, encoding='utf-8') as f:
for line in f:
entry = line.lower().strip().split('=', maxsplit=1)
if len(entry) == 2:
fields[entry[0]] = entry[1]
cls._check_seq_info(fields)
for k in { 'framerate', 'seqlength', 'imwidth', 'imheight' }:
fields[k] = int(fields[k])
return fields
@staticmethod
def _check_seq_info(seq_info):
assert set(seq_info) == {'name', 'imdir', 'framerate', 'seqlength', 'imwidth', 'imheight', 'imext'}, seq_info
class MotSeqImporter(Importer):
_EXTRACTOR_NAME = 'mot_seq'
@classmethod
def detect(cls, path):
return len(cls.find_subsets(path)) != 0
def __call__(self, path, **extra_params):
from datumaro.components.project import Project # cyclic import
project = Project()
subsets = self.find_subsets(path)
if len(subsets) == 0:
raise Exception("Failed to find 'mot' dataset at '%s'" % path)
for ann_file in subsets:
log.info("Found a dataset at '%s'" % ann_file)
source_name = osp.splitext(osp.basename(ann_file))[0]
project.add_source(source_name, {
'url': ann_file,
'format': self._EXTRACTOR_NAME,
'options': extra_params,
})
return project
@staticmethod
def find_subsets(path):
subsets = []
if path.endswith('.txt') and osp.isfile(path):
subsets = [path]
elif osp.isdir(path):
p = osp.join(path, 'gt', MotPath.GT_FILENAME)
if osp.isfile(p):
subsets.append(p)
return subsets
class MotSeqGtConverter(Converter, CliPlugin):
@classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().__init__(**kwargs)
parser.add_argument('--save-images', action='store_true',
help="Save images (default: %(default)s)")
return parser
def __init__(self, save_images=False):
super().__init__()
self._save_images = save_images
def __call__(self, extractor, save_dir):
images_dir = osp.join(save_dir, MotPath.IMAGE_DIR)
os.makedirs(images_dir, exist_ok=True)
self._images_dir = images_dir
anno_dir = osp.join(save_dir, 'gt')
os.makedirs(anno_dir, exist_ok=True)
anno_file = osp.join(anno_dir, MotPath.GT_FILENAME)
with open(anno_file, 'w', encoding="utf-8") as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=MotPath.FIELDS)
for idx, item in enumerate(extractor):
log.debug("Converting item '%s'", item.id)
frame_id = cast(item.id, int, 1 + idx)
for anno in item.annotations:
if anno.type != AnnotationType.bbox:
continue
writer.writerow({
'frame_id': frame_id,
'track_id': int(anno.attributes.get('track_id', -1)),
'x': anno.x,
'y': anno.y,
'w': anno.w,
'h': anno.h,
'confidence': int(anno.attributes.get('ignored') != True),
'class_id': 1 + cast(anno.label, int, -2),
'visibility': float(
anno.attributes.get('visibility',
1 - float(
anno.attributes.get('occluded', False)
)
)
)
})
if self._save_images:
if item.has_image and item.image.has_data:
self._save_image(item, index=frame_id)
else:
log.debug("Item '%s' has no image" % item.id)
labels_file = osp.join(save_dir, MotPath.LABELS_FILE)
with open(labels_file, 'w', encoding='utf-8') as f:
f.write('\n'.join(l.name
for l in extractor.categories()[AnnotationType.label].items)
)
def _save_image(self, item, index):
if item.image.filename:
frame_id = osp.splitext(item.image.filename)[0]
else:
frame_id = item.id
frame_id = cast(frame_id, int, index)
image_filename = '%06d%s' % (frame_id, MotPath.IMAGE_EXT)
save_image(osp.join(self._images_dir, image_filename),
item.image.data)