You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

100 lines
3.8 KiB
Python

from itertools import zip_longest
import numpy as np
from unittest import TestCase
from datumaro.components.project import Project
from datumaro.components.extractor import (Extractor, DatasetItem,
AnnotationType, LabelObject, MaskObject, PointsObject, PolygonObject,
PolyLineObject, BboxObject, CaptionObject,
LabelCategories, MaskCategories, PointsCategories
)
from datumaro.components.converters.datumaro import DatumaroConverter
from datumaro.util.test_utils import TestDir
from datumaro.util.mask_tools import generate_colormap
class DatumaroConverterTest(TestCase):
class TestExtractor(Extractor):
def __iter__(self):
items = [
DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
annotations=[
CaptionObject('hello', id=1),
CaptionObject('world', id=2, group=5),
LabelObject(2, id=3, attributes={
'x': 1,
'y': '2',
}),
BboxObject(1, 2, 3, 4, label=4, id=4, attributes={
'score': 10.0,
}),
BboxObject(5, 6, 7, 8, id=5, group=5),
PointsObject([1, 2, 2, 0, 1, 1], label=0, id=5),
MaskObject(label=3, id=5, image=np.ones((2, 3))),
]),
DatasetItem(id=21, subset='train',
annotations=[
CaptionObject('test'),
LabelObject(2),
BboxObject(1, 2, 3, 4, 5, id=42, group=42)
]),
DatasetItem(id=2, subset='val',
annotations=[
PolyLineObject([1, 2, 3, 4, 5, 6, 7, 8], id=11),
PolygonObject([1, 2, 3, 4, 5, 6, 7, 8], id=12),
]),
DatasetItem(id=42, subset='test'),
]
return iter(items)
def subsets(self):
return ['train', 'val', 'test']
def categories(self):
label_categories = LabelCategories()
for i in range(5):
label_categories.add('cat' + str(i))
mask_categories = MaskCategories(
generate_colormap(len(label_categories.items)))
points_categories = PointsCategories()
for index, _ in enumerate(label_categories.items):
points_categories.add(index, ['cat1', 'cat2'], adjacent=[0, 1])
return {
AnnotationType.label: label_categories,
AnnotationType.mask: mask_categories,
AnnotationType.points: points_categories,
}
def test_can_save_and_load(self):
with TestDir() as test_dir:
source_dataset = self.TestExtractor()
converter = DatumaroConverter(save_images=True)
converter(source_dataset, test_dir.path)
project = Project.import_from(test_dir.path, 'datumaro')
parsed_dataset = project.make_dataset()
self.assertListEqual(
sorted(source_dataset.subsets()),
sorted(parsed_dataset.subsets()),
)
self.assertEqual(len(source_dataset), len(parsed_dataset))
for subset_name in source_dataset.subsets():
source_subset = source_dataset.get_subset(subset_name)
parsed_subset = parsed_dataset.get_subset(subset_name)
for idx, (item_a, item_b) in enumerate(
zip_longest(source_subset, parsed_subset)):
self.assertEqual(item_a, item_b, str(idx))
self.assertEqual(
source_dataset.categories(),
parsed_dataset.categories())