You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
124 lines
4.6 KiB
Python
124 lines
4.6 KiB
Python
# Copyright (C) 2020 Intel Corporation
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
import numpy as np
|
|
import os
|
|
import cv2
|
|
import torch
|
|
from networks.mainnetwork import Network
|
|
from dataloaders import helpers
|
|
|
|
def convert_mask_to_polygon(mask):
|
|
mask = np.array(mask, dtype=np.uint8)
|
|
cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)
|
|
contours = None
|
|
if int(cv2.__version__.split('.')[0]) > 3:
|
|
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
|
|
else:
|
|
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]
|
|
|
|
contours = max(contours, key=lambda arr: arr.size)
|
|
if contours.shape.count(1):
|
|
contours = np.squeeze(contours)
|
|
if contours.size < 3 * 2:
|
|
raise Exception('Less then three point have been detected. Can not build a polygon.')
|
|
|
|
polygon = []
|
|
for point in contours:
|
|
polygon.append([int(point[0]), int(point[1])])
|
|
|
|
return polygon
|
|
|
|
class ModelHandler:
|
|
def __init__(self):
|
|
base_dir = os.environ.get("MODEL_PATH", "/opt/nuclio/iog")
|
|
model_path = os.path.join(base_dir, "IOG_PASCAL_SBD.pth")
|
|
self.device = torch.device("cpu")
|
|
|
|
# Number of input channels (RGB + heatmap of IOG points)
|
|
self.net = Network(nInputChannels=5, num_classes=1, backbone='resnet101',
|
|
output_stride=16, sync_bn=None, freeze_bn=False)
|
|
|
|
pretrain_dict = torch.load(model_path)
|
|
self.net.load_state_dict(pretrain_dict)
|
|
self.net.to(self.device)
|
|
self.net.eval()
|
|
|
|
def handle(self, image, bbox, pos_points, neg_points, threshold):
|
|
with torch.no_grad():
|
|
# extract a crop with padding from the image
|
|
crop_padding = 30
|
|
crop_bbox = [
|
|
max(bbox[0] - crop_padding, 0),
|
|
max(bbox[1] - crop_padding, 0),
|
|
min(bbox[2] + crop_padding, image.width - 1),
|
|
min(bbox[3] + crop_padding, image.height - 1)
|
|
]
|
|
crop_shape = (
|
|
int(crop_bbox[2] - crop_bbox[0] + 1), # width
|
|
int(crop_bbox[3] - crop_bbox[1] + 1), # height
|
|
)
|
|
|
|
# try to use crop_from_bbox(img, bbox, zero_pad) here
|
|
input_crop = np.array(image.crop(crop_bbox)).astype(np.float32)
|
|
|
|
# resize the crop
|
|
input_crop = cv2.resize(input_crop, (512, 512), interpolation=cv2.INTER_NEAREST)
|
|
crop_scale = (512 / crop_shape[0], 512 / crop_shape[1])
|
|
|
|
def translate_points_to_crop(points):
|
|
points = [
|
|
((p[0] - crop_bbox[0]) * crop_scale[0], # x
|
|
(p[1] - crop_bbox[1]) * crop_scale[1]) # y
|
|
for p in points]
|
|
|
|
return points
|
|
|
|
pos_points = translate_points_to_crop(pos_points)
|
|
neg_points = translate_points_to_crop(neg_points)
|
|
|
|
# Create IOG image
|
|
pos_gt = np.zeros(shape=input_crop.shape[:2], dtype=np.float64)
|
|
neg_gt = np.zeros(shape=input_crop.shape[:2], dtype=np.float64)
|
|
for p in pos_points:
|
|
pos_gt = np.maximum(pos_gt, helpers.make_gaussian(pos_gt.shape, center=p))
|
|
for p in neg_points:
|
|
neg_gt = np.maximum(neg_gt, helpers.make_gaussian(neg_gt.shape, center=p))
|
|
iog_image = np.stack((pos_gt, neg_gt), axis=2).astype(dtype=input_crop.dtype)
|
|
|
|
# Convert iog_image to an image (0-255 values)
|
|
cv2.normalize(iog_image, iog_image, 0, 255, cv2.NORM_MINMAX)
|
|
|
|
# Concatenate input crop and IOG image
|
|
input_blob = np.concatenate((input_crop, iog_image), axis=2)
|
|
|
|
# numpy image: H x W x C
|
|
# torch image: C X H X W
|
|
input_blob = input_blob.transpose((2, 0, 1))
|
|
# batch size is 1
|
|
input_blob = np.array([input_blob])
|
|
input_tensor = torch.from_numpy(input_blob)
|
|
|
|
input_tensor = input_tensor.to(self.device)
|
|
output_mask = self.net.forward(input_tensor)[4]
|
|
output_mask = output_mask.to(self.device)
|
|
pred = np.transpose(output_mask.data.numpy()[0, :, :, :], (1, 2, 0))
|
|
pred = pred > threshold
|
|
pred = np.squeeze(pred)
|
|
|
|
# Convert a mask to a polygon
|
|
polygon = convert_mask_to_polygon(pred)
|
|
def translate_points_to_image(points):
|
|
points = [
|
|
(p[0] / crop_scale[0] + crop_bbox[0], # x
|
|
p[1] / crop_scale[1] + crop_bbox[1]) # y
|
|
for p in points]
|
|
|
|
return points
|
|
|
|
polygon = translate_points_to_image(polygon)
|
|
|
|
return polygon
|
|
|