You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1769 lines
60 KiB
JavaScript

/*
* Copyright (C) 2019-2020 Intel Corporation
* SPDX-License-Identifier: MIT
*/
/* global
require:false
*/
(() => {
const ObjectState = require('./object-state');
const {
checkObjectType,
} = require('./common');
const {
colors,
ObjectShape,
ObjectType,
AttributeType,
HistoryActions,
} = require('./enums');
const {
DataError,
ArgumentError,
ScriptingError,
} = require('./exceptions');
const { Label } = require('./labels');
const defaultGroupColor = '#E0E0E0';
// Called with the Annotation context
function objectStateFactory(frame, data) {
const objectState = new ObjectState(data);
// eslint-disable-next-line no-underscore-dangle
objectState.__internal = {
save: this.save.bind(this, frame, objectState),
delete: this.delete.bind(this),
};
return objectState;
}
function checkNumberOfPoints(shapeType, points) {
if (shapeType === ObjectShape.RECTANGLE) {
if (points.length / 2 !== 2) {
throw new DataError(
`Rectangle must have 2 points, but got ${points.length / 2}`,
);
}
} else if (shapeType === ObjectShape.POLYGON) {
if (points.length / 2 < 3) {
throw new DataError(
`Polygon must have at least 3 points, but got ${points.length / 2}`,
);
}
} else if (shapeType === ObjectShape.POLYLINE) {
if (points.length / 2 < 2) {
throw new DataError(
`Polyline must have at least 2 points, but got ${points.length / 2}`,
);
}
} else if (shapeType === ObjectShape.POINTS) {
if (points.length / 2 < 1) {
throw new DataError(
`Points must have at least 1 points, but got ${points.length / 2}`,
);
}
} else {
throw new ArgumentError(
`Unknown value of shapeType has been recieved ${shapeType}`,
);
}
}
function checkShapeArea(shapeType, points) {
const MIN_SHAPE_LENGTH = 3;
const MIN_SHAPE_AREA = 9;
if (shapeType === ObjectShape.POINTS) {
return true;
}
let xmin = Number.MAX_SAFE_INTEGER;
let xmax = Number.MIN_SAFE_INTEGER;
let ymin = Number.MAX_SAFE_INTEGER;
let ymax = Number.MIN_SAFE_INTEGER;
for (let i = 0; i < points.length - 1; i += 2) {
xmin = Math.min(xmin, points[i]);
xmax = Math.max(xmax, points[i]);
ymin = Math.min(ymin, points[i + 1]);
ymax = Math.max(ymax, points[i + 1]);
}
if (shapeType === ObjectShape.POLYLINE) {
const length = Math.max(
xmax - xmin,
ymax - ymin,
);
return length >= MIN_SHAPE_LENGTH;
}
const area = (xmax - xmin) * (ymax - ymin);
return area >= MIN_SHAPE_AREA;
}
function validateAttributeValue(value, attr) {
const { values } = attr;
const type = attr.inputType;
if (typeof (value) !== 'string') {
throw new ArgumentError(
`Attribute value is expected to be string, but got ${typeof (value)}`,
);
}
if (type === AttributeType.NUMBER) {
return +value >= +values[0]
&& +value <= +values[1]
&& !((+value - +values[0]) % +values[2]);
}
if (type === AttributeType.CHECKBOX) {
return ['true', 'false'].includes(value.toLowerCase());
}
if (type === AttributeType.TEXT) {
return true;
}
return values.includes(value);
}
class Annotation {
constructor(data, clientID, injection) {
this.taskLabels = injection.labels;
this.history = injection.history;
this.clientID = clientID;
this.serverID = data.id;
this.group = data.group;
this.label = this.taskLabels[data.label_id];
this.frame = data.frame;
this.removed = false;
this.lock = false;
this.updated = Date.now();
this.attributes = data.attributes.reduce((attributeAccumulator, attr) => {
attributeAccumulator[attr.spec_id] = attr.value;
return attributeAccumulator;
}, {});
this.appendDefaultAttributes(this.label);
injection.groups.max = Math.max(injection.groups.max, this.group);
}
_saveLock(lock) {
const undoLock = this.lock;
const redoLock = lock;
this.history.do(HistoryActions.CHANGED_LOCK, () => {
this.lock = undoLock;
}, () => {
this.lock = redoLock;
}, [this.clientID]);
this.lock = lock;
}
_saveColor(color) {
const undoColor = this.color;
const redoColor = color;
this.history.do(HistoryActions.CHANGED_COLOR, () => {
this.color = undoColor;
}, () => {
this.color = redoColor;
}, [this.clientID]);
this.color = color;
}
_saveHidden(hidden) {
const undoHidden = this.hidden;
const redoHidden = hidden;
this.history.do(HistoryActions.CHANGED_HIDDEN, () => {
this.hidden = undoHidden;
}, () => {
this.hidden = redoHidden;
}, [this.clientID]);
this.hidden = hidden;
}
_saveLabel(label) {
const undoLabel = this.label;
const redoLabel = label;
const undoAttributes = { ...this.attributes };
this.label = label;
this.attributes = {};
this.appendDefaultAttributes(label);
const redoAttributes = { ...this.attributes };
this.history.do(HistoryActions.CHANGED_LABEL, () => {
this.label = undoLabel;
this.attributes = undoAttributes;
}, () => {
this.label = redoLabel;
this.attributes = redoAttributes;
}, [this.clientID]);
}
_saveAttributes(attributes) {
const undoAttributes = { ...this.attributes };
for (const attrID of Object.keys(attributes)) {
this.attributes[attrID] = attributes[attrID];
}
const redoAttributes = { ...this.attributes };
this.history.do(HistoryActions.CHANGED_ATTRIBUTES, () => {
this.attributes = undoAttributes;
}, () => {
this.attributes = redoAttributes;
}, [this.clientID]);
}
appendDefaultAttributes(label) {
const labelAttributes = label.attributes;
for (const attribute of labelAttributes) {
if (!(attribute.id in this.attributes)) {
this.attributes[attribute.id] = attribute.defaultValue;
}
}
}
updateTimestamp(updated) {
const anyChanges = updated.label || updated.attributes || updated.points
|| updated.outside || updated.occluded || updated.keyframe
|| updated.zOrder;
if (anyChanges) {
this.updated = Date.now();
}
}
delete(force) {
if (!this.lock || force) {
this.removed = true;
this.history.do(HistoryActions.REMOVED_OBJECT, () => {
this.removed = false;
}, () => {
this.removed = true;
}, [this.clientID]);
}
return this.removed;
}
}
class Drawn extends Annotation {
constructor(data, clientID, color, injection) {
super(data, clientID, injection);
this.frameMeta = injection.frameMeta;
this.hidden = false;
this.color = color;
this.shapeType = null;
}
_validateStateBeforeSave(frame, data, updated) {
let fittedPoints = [];
if (updated.label) {
checkObjectType('label', data.label, null, Label);
}
const labelAttributes = data.label.attributes
.reduce((accumulator, value) => {
accumulator[value.id] = value;
return accumulator;
}, {});
if (updated.attributes) {
for (const attrID of Object.keys(data.attributes)) {
const value = data.attributes[attrID];
if (attrID in labelAttributes) {
if (!validateAttributeValue(value, labelAttributes[attrID])) {
throw new ArgumentError(
`Trying to save an attribute attribute with id ${attrID} and invalid value ${value}`,
);
}
} else {
throw new ArgumentError(
`The label of the shape doesn't have the attribute with id ${attrID} and value ${value}`,
);
}
}
}
if (updated.points) {
checkObjectType('points', data.points, null, Array);
checkNumberOfPoints(this.shapeType, data.points);
// cut points
const { width, height } = this.frameMeta[frame];
for (let i = 0; i < data.points.length - 1; i += 2) {
const x = data.points[i];
const y = data.points[i + 1];
checkObjectType('coordinate', x, 'number', null);
checkObjectType('coordinate', y, 'number', null);
fittedPoints.push(
Math.clamp(x, 0, width),
Math.clamp(y, 0, height),
);
}
if (!checkShapeArea(this.shapeType, fittedPoints)) {
fittedPoints = [];
}
}
if (updated.occluded) {
checkObjectType('occluded', data.occluded, 'boolean', null);
}
if (updated.outside) {
checkObjectType('outside', data.outside, 'boolean', null);
}
if (updated.zOrder) {
checkObjectType('zOrder', data.zOrder, 'integer', null);
}
if (updated.lock) {
checkObjectType('lock', data.lock, 'boolean', null);
}
if (updated.color) {
checkObjectType('color', data.color, 'string', null);
if (/^#[0-9A-F]{6}$/i.test(data.color)) {
throw new ArgumentError(
`Got invalid color value: "${data.color}"`,
);
}
}
if (updated.hidden) {
checkObjectType('hidden', data.hidden, 'boolean', null);
}
if (updated.keyframe) {
checkObjectType('keyframe', data.keyframe, 'boolean', null);
}
return fittedPoints;
}
save() {
throw new ScriptingError(
'Is not implemented',
);
}
get() {
throw new ScriptingError(
'Is not implemented',
);
}
toJSON() {
throw new ScriptingError(
'Is not implemented',
);
}
}
class Shape extends Drawn {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.points = data.points;
this.occluded = data.occluded;
this.zOrder = data.z_order;
}
// Method is used to export data to the server
toJSON() {
return {
type: this.shapeType,
clientID: this.clientID,
occluded: this.occluded,
z_order: this.zOrder,
points: [...this.points],
attributes: Object.keys(this.attributes).reduce((attributeAccumulator, attrId) => {
attributeAccumulator.push({
spec_id: attrId,
value: this.attributes[attrId],
});
return attributeAccumulator;
}, []),
id: this.serverID,
frame: this.frame,
label_id: this.label.id,
group: this.group,
};
}
// Method is used to construct ObjectState objects
get(frame) {
if (frame !== this.frame) {
throw new ScriptingError(
'Got frame is not equal to the frame of the shape',
);
}
return {
objectType: ObjectType.SHAPE,
shapeType: this.shapeType,
clientID: this.clientID,
serverID: this.serverID,
occluded: this.occluded,
lock: this.lock,
zOrder: this.zOrder,
points: [...this.points],
attributes: { ...this.attributes },
label: this.label,
group: {
color: this.group ? colors[this.group % colors.length] : defaultGroupColor,
id: this.group,
},
color: this.color,
hidden: this.hidden,
updated: this.updated,
frame,
};
}
_savePoints(points) {
const undoPoints = this.points;
const redoPoints = points;
this.history.do(HistoryActions.CHANGED_POINTS, () => {
this.points = undoPoints;
}, () => {
this.points = redoPoints;
}, [this.clientID]);
this.points = points;
}
_saveOccluded(occluded) {
const undoOccluded = this.occluded;
const redoOccluded = occluded;
this.history.do(HistoryActions.CHANGED_OCCLUDED, () => {
this.occluded = undoOccluded;
}, () => {
this.occluded = redoOccluded;
}, [this.clientID]);
this.occluded = occluded;
}
_saveZOrder(zOrder) {
const undoZOrder = this.zOrder;
const redoZOrder = zOrder;
this.history.do(HistoryActions.CHANGED_ZORDER, () => {
this.zOrder = undoZOrder;
}, () => {
this.zOrder = redoZOrder;
}, [this.clientID]);
this.zOrder = zOrder;
}
save(frame, data) {
if (frame !== this.frame) {
throw new ScriptingError(
'Got frame is not equal to the frame of the shape',
);
}
if (this.lock && data.lock) {
return objectStateFactory.call(this, frame, this.get(frame));
}
const updated = data.updateFlags;
const fittedPoints = this._validateStateBeforeSave(frame, data, updated);
// Now when all fields are validated, we can apply them
if (updated.label) {
this._saveLabel(data.label);
}
if (updated.attributes) {
this._saveAttributes(data.attributes);
}
if (updated.points && fittedPoints.length) {
this._savePoints(fittedPoints);
}
if (updated.occluded) {
this._saveOccluded(data.occluded);
}
if (updated.zOrder) {
this._saveZOrder(data.zOrder);
}
if (updated.lock) {
this._saveLock(data.lock);
}
if (updated.color) {
this._saveColor(data.color);
}
if (updated.hidden) {
this._saveHidden(data.hidden);
}
this.updateTimestamp(updated);
updated.reset();
return objectStateFactory.call(this, frame, this.get(frame));
}
}
class Track extends Drawn {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapes = data.shapes.reduce((shapeAccumulator, value) => {
shapeAccumulator[value.frame] = {
serverID: value.id,
occluded: value.occluded,
zOrder: value.z_order,
points: value.points,
outside: value.outside,
attributes: value.attributes.reduce((attributeAccumulator, attr) => {
attributeAccumulator[attr.spec_id] = attr.value;
return attributeAccumulator;
}, {}),
};
return shapeAccumulator;
}, {});
}
// Method is used to export data to the server
toJSON() {
const labelAttributes = this.label.attributes.reduce((accumulator, attribute) => {
accumulator[attribute.id] = attribute;
return accumulator;
}, {});
return {
clientID: this.clientID,
id: this.serverID,
frame: this.frame,
label_id: this.label.id,
group: this.group,
attributes: Object.keys(this.attributes).reduce((attributeAccumulator, attrId) => {
if (!labelAttributes[attrId].mutable) {
attributeAccumulator.push({
spec_id: attrId,
value: this.attributes[attrId],
});
}
return attributeAccumulator;
}, []),
shapes: Object.keys(this.shapes).reduce((shapesAccumulator, frame) => {
shapesAccumulator.push({
type: this.shapeType,
occluded: this.shapes[frame].occluded,
z_order: this.shapes[frame].zOrder,
points: [...this.shapes[frame].points],
outside: this.shapes[frame].outside,
attributes: Object.keys(this.shapes[frame].attributes)
.reduce((attributeAccumulator, attrId) => {
if (labelAttributes[attrId].mutable) {
attributeAccumulator.push({
spec_id: attrId,
value: this.shapes[frame].attributes[attrId],
});
}
return attributeAccumulator;
}, []),
id: this.shapes[frame].serverID,
frame: +frame,
});
return shapesAccumulator;
}, []),
};
}
// Method is used to construct ObjectState objects
get(frame) {
const {
prev,
next,
first,
last,
} = this.boundedKeyframes(frame);
return {
...this.getPosition(frame, prev, next),
attributes: this.getAttributes(frame),
group: {
color: this.group ? colors[this.group % colors.length] : defaultGroupColor,
id: this.group,
},
objectType: ObjectType.TRACK,
shapeType: this.shapeType,
clientID: this.clientID,
serverID: this.serverID,
lock: this.lock,
color: this.color,
hidden: this.hidden,
updated: this.updated,
label: this.label,
keyframes: {
prev,
next,
first,
last,
},
frame,
};
}
boundedKeyframes(targetFrame) {
const frames = Object.keys(this.shapes).map((frame) => +frame);
let lDiff = Number.MAX_SAFE_INTEGER;
let rDiff = Number.MAX_SAFE_INTEGER;
let first = Number.MAX_SAFE_INTEGER;
let last = Number.MIN_SAFE_INTEGER;
for (const frame of frames) {
if (frame < first) {
first = frame;
}
if (frame > last) {
last = frame;
}
const diff = Math.abs(targetFrame - frame);
if (frame < targetFrame && diff < lDiff) {
lDiff = diff;
} else if (frame > targetFrame && diff < rDiff) {
rDiff = diff;
}
}
const prev = lDiff === Number.MAX_SAFE_INTEGER ? null : targetFrame - lDiff;
const next = rDiff === Number.MAX_SAFE_INTEGER ? null : targetFrame + rDiff;
return {
prev,
next,
first,
last,
};
}
getAttributes(targetFrame) {
const result = {};
// First of all copy all unmutable attributes
for (const attrID in this.attributes) {
if (Object.prototype.hasOwnProperty.call(this.attributes, attrID)) {
result[attrID] = this.attributes[attrID];
}
}
// Secondly get latest mutable attributes up to target frame
const frames = Object.keys(this.shapes).sort((a, b) => +a - +b);
for (const frame of frames) {
if (frame <= targetFrame) {
const { attributes } = this.shapes[frame];
for (const attrID in attributes) {
if (Object.prototype.hasOwnProperty.call(attributes, attrID)) {
result[attrID] = attributes[attrID];
}
}
}
}
return result;
}
_saveLabel(label) {
const undoLabel = this.label;
const redoLabel = label;
const undoAttributes = {
unmutable: { ...this.attributes },
mutable: Object.keys(this.shapes).map((key) => ({
frame: +key,
attributes: { ...this.shapes[key].attributes },
})),
};
this.label = label;
this.attributes = {};
for (const shape of Object.values(this.shapes)) {
shape.attributes = {};
}
this.appendDefaultAttributes(label);
const redoAttributes = {
unmutable: { ...this.attributes },
mutable: Object.keys(this.shapes).map((key) => ({
frame: +key,
attributes: { ...this.shapes[key].attributes },
})),
};
this.history.do(HistoryActions.CHANGED_LABEL, () => {
this.label = undoLabel;
this.attributes = undoAttributes.unmutable;
for (const mutable of undoAttributes.mutable) {
this.shapes[mutable.frame].attributes = mutable.attributes;
}
}, () => {
this.label = redoLabel;
this.attributes = redoAttributes.unmutable;
for (const mutable of redoAttributes.mutable) {
this.shapes[mutable.frame].attributes = mutable.attributes;
}
}, [this.clientID]);
}
_saveAttributes(frame, attributes) {
const current = this.get(frame);
const labelAttributes = this.label.attributes
.reduce((accumulator, value) => {
accumulator[value.id] = value;
return accumulator;
}, {});
const wasKeyframe = frame in this.shapes;
const undoAttributes = this.attributes;
const undoShape = wasKeyframe ? this.shapes[frame] : undefined;
let mutableAttributesUpdated = false;
const redoAttributes = { ...this.attributes };
for (const attrID of Object.keys(attributes)) {
if (!labelAttributes[attrID].mutable) {
redoAttributes[attrID] = attributes[attrID];
} else if (attributes[attrID] !== current.attributes[attrID]) {
mutableAttributesUpdated = mutableAttributesUpdated
// not keyframe yet
|| !(frame in this.shapes)
// keyframe, but without this attrID
|| !(attrID in this.shapes[frame].attributes)
// keyframe with attrID, but with another value
|| (this.shapes[frame].attributes[attrID] !== attributes[attrID]);
}
}
let redoShape;
if (mutableAttributesUpdated) {
if (wasKeyframe) {
redoShape = {
...this.shapes[frame],
attributes: {
...this.shapes[frame].attributes,
},
};
} else {
redoShape = {
frame,
zOrder: current.zOrder,
points: current.points,
outside: current.outside,
occluded: current.occluded,
attributes: {},
};
}
}
for (const attrID of Object.keys(attributes)) {
if (labelAttributes[attrID].mutable
&& attributes[attrID] !== current.attributes[attrID]) {
redoShape.attributes[attrID] = attributes[attrID];
}
}
this.attributes = redoAttributes;
if (redoShape) {
this.shapes[frame] = redoShape;
}
this.history.do(HistoryActions.CHANGED_ATTRIBUTES, () => {
this.attributes = undoAttributes;
if (undoShape) {
this.shapes[frame] = undoShape;
} else if (redoShape) {
delete this.shapes[frame];
}
}, () => {
this.attributes = redoAttributes;
if (redoShape) {
this.shapes[frame] = redoShape;
}
}, [this.clientID]);
}
_appendShapeActionToHistory(actionType, frame, undoShape, redoShape) {
this.history.do(actionType, () => {
if (!undoShape) {
delete this.shapes[frame];
} else {
this.shapes[frame] = undoShape;
}
}, () => {
if (!redoShape) {
delete this.shapes[frame];
} else {
this.shapes[frame] = redoShape;
}
}, [this.clientID]);
}
_savePoints(frame, points) {
const current = this.get(frame);
const wasKeyframe = frame in this.shapes;
const undoShape = wasKeyframe ? this.shapes[frame] : undefined;
const redoShape = wasKeyframe ? { ...this.shapes[frame], points } : {
frame,
points,
zOrder: current.zOrder,
outside: current.outside,
occluded: current.occluded,
attributes: {},
};
this.shapes[frame] = redoShape;
this._appendShapeActionToHistory(
HistoryActions.CHANGED_POINTS,
frame,
undoShape,
redoShape,
);
}
_saveOutside(frame, outside) {
const current = this.get(frame);
const wasKeyframe = frame in this.shapes;
const undoShape = wasKeyframe ? this.shapes[frame] : undefined;
const redoShape = wasKeyframe ? { ...this.shapes[frame], outside } : {
frame,
outside,
zOrder: current.zOrder,
points: current.points,
occluded: current.occluded,
attributes: {},
};
this.shapes[frame] = redoShape;
this._appendShapeActionToHistory(
HistoryActions.CHANGED_OUTSIDE,
frame,
undoShape,
redoShape,
);
}
_saveOccluded(frame, occluded) {
const current = this.get(frame);
const wasKeyframe = frame in this.shapes;
const undoShape = wasKeyframe ? this.shapes[frame] : undefined;
const redoShape = wasKeyframe ? { ...this.shapes[frame], occluded } : {
frame,
occluded,
zOrder: current.zOrder,
points: current.points,
outside: current.outside,
attributes: {},
};
this.shapes[frame] = redoShape;
this._appendShapeActionToHistory(
HistoryActions.CHANGED_OCCLUDED,
frame,
undoShape,
redoShape,
);
}
_saveZOrder(frame, zOrder) {
const current = this.get(frame);
const wasKeyframe = frame in this.shapes;
const undoShape = wasKeyframe ? this.shapes[frame] : undefined;
const redoShape = wasKeyframe ? { ...this.shapes[frame], zOrder } : {
frame,
zOrder,
occluded: current.occluded,
points: current.points,
outside: current.outside,
attributes: {},
};
this.shapes[frame] = redoShape;
this._appendShapeActionToHistory(
HistoryActions.CHANGED_ZORDER,
frame,
undoShape,
redoShape,
);
}
_saveKeyframe(frame, keyframe) {
const current = this.get(frame);
const wasKeyframe = frame in this.shapes;
if ((keyframe && wasKeyframe) || (!keyframe && !wasKeyframe)) {
return;
}
const undoShape = wasKeyframe ? this.shapes[frame] : undefined;
const redoShape = keyframe ? {
frame,
zOrder: current.zOrder,
points: current.points,
outside: current.outside,
occluded: current.occluded,
attributes: {},
} : undefined;
if (redoShape) {
this.shapes[frame] = redoShape;
} else {
delete this.shapes[frame];
}
this._appendShapeActionToHistory(
HistoryActions.CHANGED_KEYFRAME,
frame,
undoShape,
redoShape,
);
}
save(frame, data) {
if (this.lock && data.lock) {
return objectStateFactory.call(this, frame, this.get(frame));
}
const updated = data.updateFlags;
const fittedPoints = this._validateStateBeforeSave(frame, data, updated);
if (updated.label) {
this._saveLabel(data.label);
}
if (updated.lock) {
this._saveLock(data.lock);
}
if (updated.color) {
this._saveColor(data.color);
}
if (updated.hidden) {
this._saveHidden(data.hidden);
}
if (updated.points && fittedPoints.length) {
this._savePoints(frame, fittedPoints);
}
if (updated.outside) {
this._saveOutside(frame, data.outside);
}
if (updated.occluded) {
this._saveOccluded(frame, data.occluded);
}
if (updated.zOrder) {
this._saveZOrder(frame, data.zOrder);
}
if (updated.attributes) {
this._saveAttributes(frame, data.attributes);
}
if (updated.keyframe) {
this._saveKeyframe(frame, data.keyframe);
}
this.updateTimestamp(updated);
updated.reset();
return objectStateFactory.call(this, frame, this.get(frame));
}
getPosition(targetFrame, leftKeyframe, rightFrame) {
const leftFrame = targetFrame in this.shapes ? targetFrame : leftKeyframe;
const rightPosition = Number.isInteger(rightFrame) ? this.shapes[rightFrame] : null;
const leftPosition = Number.isInteger(leftFrame) ? this.shapes[leftFrame] : null;
if (leftPosition && rightPosition) {
return {
...this.interpolatePosition(
leftPosition,
rightPosition,
(targetFrame - leftFrame) / (rightFrame - leftFrame),
),
keyframe: targetFrame in this.shapes,
};
}
if (leftPosition) {
return {
points: [...leftPosition.points],
occluded: leftPosition.occluded,
outside: leftPosition.outside,
zOrder: leftPosition.zOrder,
keyframe: targetFrame in this.shapes,
};
}
if (rightPosition) {
return {
points: [...rightPosition.points],
occluded: rightPosition.occluded,
outside: true,
zOrder: rightPosition.zOrder,
keyframe: targetFrame in this.shapes,
};
}
throw new DataError(
'No one left position or right position was found. '
+ `Interpolation impossible. Client ID: ${this.id}`,
);
}
}
class Tag extends Annotation {
constructor(data, clientID, injection) {
super(data, clientID, injection);
}
// Method is used to export data to the server
toJSON() {
return {
clientID: this.clientID,
id: this.serverID,
frame: this.frame,
label_id: this.label.id,
group: this.group,
attributes: Object.keys(this.attributes).reduce((attributeAccumulator, attrId) => {
attributeAccumulator.push({
spec_id: attrId,
value: this.attributes[attrId],
});
return attributeAccumulator;
}, []),
};
}
// Method is used to construct ObjectState objects
get(frame) {
if (frame !== this.frame) {
throw new ScriptingError(
'Got frame is not equal to the frame of the shape',
);
}
return {
objectType: ObjectType.TAG,
clientID: this.clientID,
serverID: this.serverID,
lock: this.lock,
attributes: { ...this.attributes },
label: this.label,
group: this.group,
updated: this.updated,
frame,
};
}
save(frame, data) {
if (frame !== this.frame) {
throw new ScriptingError(
'Got frame is not equal to the frame of the tag',
);
}
if (this.lock && data.lock) {
return objectStateFactory.call(this, frame, this.get(frame));
}
const updated = data.updateFlags;
this._validateStateBeforeSave(frame, data, updated);
// Now when all fields are validated, we can apply them
if (updated.label) {
this._saveLabel(data.label);
}
if (updated.attributes) {
this._saveAttributes(data.attributes);
}
if (updated.lock) {
this._saveLock(data.lock);
}
this.updateTimestamp(updated);
updated.reset();
return objectStateFactory.call(this, frame, this.get(frame));
}
}
class RectangleShape extends Shape {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.RECTANGLE;
checkNumberOfPoints(this.shapeType, this.points);
}
static distance(points, x, y) {
const [xtl, ytl, xbr, ybr] = points;
if (!(x >= xtl && x <= xbr && y >= ytl && y <= ybr)) {
// Cursor is outside of a box
return null;
}
// The shortest distance from point to an edge
return Math.min.apply(null, [x - xtl, y - ytl, xbr - x, ybr - y]);
}
}
class PolyShape extends Shape {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
}
}
class PolygonShape extends PolyShape {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.POLYGON;
checkNumberOfPoints(this.shapeType, this.points);
}
static distance(points, x, y) {
function position(x1, y1, x2, y2) {
return ((x2 - x1) * (y - y1) - (x - x1) * (y2 - y1));
}
let wn = 0;
const distances = [];
for (let i = 0, j = points.length - 2; i < points.length - 1; j = i, i += 2) {
// Current point
const x1 = points[j];
const y1 = points[j + 1];
// Next point
const x2 = points[i];
const y2 = points[i + 1];
// Check if a point is inside a polygon
// with a winding numbers algorithm
// https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm
if (y1 <= y) {
if (y2 > y) {
if (position(x1, y1, x2, y2) > 0) {
wn++;
}
}
} else if (y2 <= y) {
if (position(x1, y1, x2, y2) < 0) {
wn--;
}
}
// Find the shortest distance from point to an edge
// Get an equation of a line in general
const aCoef = (y1 - y2);
const bCoef = (x2 - x1);
// Vector (aCoef, bCoef) is a perpendicular to line
// Now find the point where two lines
// (edge and its perpendicular through the point (x,y)) are cross
const xCross = x - aCoef;
const yCross = y - bCoef;
if (((xCross - x1) * (x2 - xCross)) >= 0
&& ((yCross - y1) * (y2 - yCross)) >= 0) {
// Cross point is on segment between p1(x1,y1) and p2(x2,y2)
distances.push(Math.sqrt(
Math.pow(x - xCross, 2)
+ Math.pow(y - yCross, 2),
));
} else {
distances.push(
Math.min(
Math.sqrt(Math.pow(x1 - x, 2) + Math.pow(y1 - y, 2)),
Math.sqrt(Math.pow(x2 - x, 2) + Math.pow(y2 - y, 2)),
),
);
}
}
if (wn !== 0) {
return Math.min.apply(null, distances);
}
return null;
}
}
class PolylineShape extends PolyShape {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.POLYLINE;
checkNumberOfPoints(this.shapeType, this.points);
}
static distance(points, x, y) {
const distances = [];
for (let i = 0; i < points.length - 2; i += 2) {
// Current point
const x1 = points[i];
const y1 = points[i + 1];
// Next point
const x2 = points[i + 2];
const y2 = points[i + 3];
// Find the shortest distance from point to an edge
if (((x - x1) * (x2 - x)) >= 0 && ((y - y1) * (y2 - y)) >= 0) {
// Find the length of a perpendicular
// https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
distances.push(
Math.abs((y2 - y1) * x - (x2 - x1) * y + x2 * y1 - y2 * x1) / Math
.sqrt(Math.pow(y2 - y1, 2) + Math.pow(x2 - x1, 2)),
);
} else {
// The link below works for lines (which have infinit length)
// There is a case when perpendicular doesn't cross the edge
// In this case we don't use the computed distance
// Instead we use just distance to the nearest point
distances.push(
Math.min(
Math.sqrt(Math.pow(x1 - x, 2) + Math.pow(y1 - y, 2)),
Math.sqrt(Math.pow(x2 - x, 2) + Math.pow(y2 - y, 2)),
),
);
}
}
return Math.min.apply(null, distances);
}
}
class PointsShape extends PolyShape {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.POINTS;
checkNumberOfPoints(this.shapeType, this.points);
}
static distance(points, x, y) {
const distances = [];
for (let i = 0; i < points.length; i += 2) {
const x1 = points[i];
const y1 = points[i + 1];
distances.push(
Math.sqrt(Math.pow(x1 - x, 2) + Math.pow(y1 - y, 2)),
);
}
return Math.min.apply(null, distances);
}
}
class RectangleTrack extends Track {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.RECTANGLE;
for (const shape of Object.values(this.shapes)) {
checkNumberOfPoints(this.shapeType, shape.points);
}
}
interpolatePosition(leftPosition, rightPosition, offset) {
const positionOffset = [
rightPosition.points[0] - leftPosition.points[0],
rightPosition.points[1] - leftPosition.points[1],
rightPosition.points[2] - leftPosition.points[2],
rightPosition.points[3] - leftPosition.points[3],
];
return { // xtl, ytl, xbr, ybr
points: [
leftPosition.points[0] + positionOffset[0] * offset,
leftPosition.points[1] + positionOffset[1] * offset,
leftPosition.points[2] + positionOffset[2] * offset,
leftPosition.points[3] + positionOffset[3] * offset,
],
occluded: leftPosition.occluded,
outside: leftPosition.outside,
zOrder: leftPosition.zOrder,
};
}
}
class PolyTrack extends Track {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
}
interpolatePosition(leftPosition, rightPosition, offset) {
function findBox(points) {
let xmin = Number.MAX_SAFE_INTEGER;
let ymin = Number.MAX_SAFE_INTEGER;
let xmax = Number.MIN_SAFE_INTEGER;
let ymax = Number.MIN_SAFE_INTEGER;
for (let i = 0; i < points.length; i += 2) {
if (points[i] < xmin) xmin = points[i];
if (points[i + 1] < ymin) ymin = points[i + 1];
if (points[i] > xmax) xmax = points[i];
if (points[i + 1] > ymax) ymax = points[i + 1];
}
return {
xmin,
ymin,
xmax,
ymax,
};
}
function normalize(points, box) {
const normalized = [];
const width = box.xmax - box.xmin;
const height = box.ymax - box.ymin;
for (let i = 0; i < points.length; i += 2) {
normalized.push(
(points[i] - box.xmin) / width,
(points[i + 1] - box.ymin) / height,
);
}
return normalized;
}
function denormalize(points, box) {
const denormalized = [];
const width = box.xmax - box.xmin;
const height = box.ymax - box.ymin;
for (let i = 0; i < points.length; i += 2) {
denormalized.push(
points[i] * width + box.xmin,
points[i + 1] * height + box.ymin,
);
}
return denormalized;
}
function toPoints(array) {
const points = [];
for (let i = 0; i < array.length; i += 2) {
points.push({
x: array[i],
y: array[i + 1],
});
}
return points;
}
function toArray(points) {
const array = [];
for (const point of points) {
array.push(point.x, point.y);
}
return array;
}
function computeDistances(source, target) {
const distances = {};
for (let i = 0; i < source.length; i++) {
distances[i] = distances[i] || {};
for (let j = 0; j < target.length; j++) {
const dx = source[i].x - target[j].x;
const dy = source[i].y - target[j].y;
distances[i][j] = Math.sqrt(Math.pow(dx, 2) + Math.pow(dy, 2));
}
}
return distances;
}
function truncateByThreshold(mapping, threshold) {
for (const key of Object.keys(mapping)) {
if (mapping[key].distance > threshold) {
delete mapping[key];
}
}
}
// https://en.wikipedia.org/wiki/Stable_marriage_problem
// TODO: One of important part of the algorithm is to correctly match
// "corner" points. Thus it is possible for each of such point calculate
// a descriptor (d) and use (x, y, d) to calculate the distance. One more
// idea is to be sure that order or matched points is preserved. For example,
// if p1 matches q1 and p2 matches q2 and between p1 and p2 we don't have any
// points thus we should not have points between q1 and q2 as well.
function stableMarriageProblem(men, women, distances) {
const menPreferences = {};
for (const man of men) {
menPreferences[man] = women.concat()
.sort((w1, w2) => distances[man][w1] - distances[man][w2]);
}
// Start alghoritm with max N^2 complexity
const womenMaybe = {}; // id woman:id man,distance
const menBusy = {}; // id man:boolean
let prefIndex = 0;
// While there is at least one free man
while (Object.values(menBusy).length !== men.length) {
// Every man makes offer to the best woman
for (const man of men) {
// The man have already found a woman
if (menBusy[man]) {
continue;
}
const woman = menPreferences[man][prefIndex];
const distance = distances[man][woman];
// A women chooses the best offer and says "maybe"
if (woman in womenMaybe && womenMaybe[woman].distance > distance) {
// A woman got better offer
const prevChoice = womenMaybe[woman].value;
delete womenMaybe[woman];
delete menBusy[prevChoice];
}
if (!(woman in womenMaybe)) {
womenMaybe[woman] = {
value: man,
distance,
};
menBusy[man] = true;
}
}
prefIndex++;
}
const result = {};
for (const woman of Object.keys(womenMaybe)) {
result[womenMaybe[woman].value] = {
value: woman,
distance: womenMaybe[woman].distance,
};
}
return result;
}
function getMapping(source, target) {
function sumEdges(points) {
let result = 0;
for (let i = 1; i < points.length; i += 2) {
const distance = Math.sqrt(Math.pow(points[i].x - points[i - 1].x, 2)
+ Math.pow(points[i].y - points[i - 1].y, 2));
result += distance;
}
// Corner case when work with one point
// Mapping in this case can't be wrong
if (!result) {
return Number.MAX_SAFE_INTEGER;
}
return result;
}
function computeDeviation(points, average) {
let result = 0;
for (let i = 1; i < points.length; i += 2) {
const distance = Math.sqrt(Math.pow(points[i].x - points[i - 1].x, 2)
+ Math.pow(points[i].y - points[i - 1].y, 2));
result += Math.pow(distance - average, 2);
}
return result;
}
const processedSource = [];
const processedTarget = [];
const distances = computeDistances(source, target);
const mapping = stableMarriageProblem(Array.from(source.keys()),
Array.from(target.keys()), distances);
const average = (sumEdges(target)
+ sumEdges(source)) / (target.length + source.length);
const meanSquareDeviation = Math.sqrt((computeDeviation(source, average)
+ computeDeviation(target, average)) / (source.length + target.length));
const threshold = average + 3 * meanSquareDeviation; // 3 sigma rule
truncateByThreshold(mapping, threshold);
for (const key of Object.keys(mapping)) {
mapping[key] = mapping[key].value;
}
// const receivingOrder = Object.keys(mapping).map(x => +x).sort((a,b) => a - b);
const receivingOrder = this.appendMapping(mapping, source, target);
for (const pointIdx of receivingOrder) {
processedSource.push(source[pointIdx]);
processedTarget.push(target[mapping[pointIdx]]);
}
return [processedSource, processedTarget];
}
if (offset === 0) {
return {
points: [...leftPosition.points],
occluded: leftPosition.occluded,
outside: leftPosition.outside,
zOrder: leftPosition.zOrder,
};
}
let leftBox = findBox(leftPosition.points);
let rightBox = findBox(rightPosition.points);
// Sometimes (if shape has one point or shape is line),
// We can get box with zero area
// Next computation will be with NaN in this case
// We have to prevent it
const delta = 1;
if (leftBox.xmax - leftBox.xmin < delta || rightBox.ymax - rightBox.ymin < delta) {
leftBox = {
xmin: 0,
xmax: 1024, // TODO: Get actual image size
ymin: 0,
ymax: 768,
};
rightBox = leftBox;
}
const leftPoints = toPoints(normalize(leftPosition.points, leftBox));
const rightPoints = toPoints(normalize(rightPosition.points, rightBox));
let newLeftPoints = [];
let newRightPoints = [];
if (leftPoints.length > rightPoints.length) {
const [
processedRight,
processedLeft,
] = getMapping.call(this, rightPoints, leftPoints);
newLeftPoints = processedLeft;
newRightPoints = processedRight;
} else {
const [
processedLeft,
processedRight,
] = getMapping.call(this, leftPoints, rightPoints);
newLeftPoints = processedLeft;
newRightPoints = processedRight;
}
const absoluteLeftPoints = denormalize(toArray(newLeftPoints), leftBox);
const absoluteRightPoints = denormalize(toArray(newRightPoints), rightBox);
const interpolation = [];
for (let i = 0; i < absoluteLeftPoints.length; i++) {
interpolation.push(absoluteLeftPoints[i] + (
absoluteRightPoints[i] - absoluteLeftPoints[i]) * offset);
}
return {
points: interpolation,
occluded: leftPosition.occluded,
outside: leftPosition.outside,
zOrder: leftPosition.zOrder,
};
}
// mapping is predicted order of points sourse_idx:target_idx
// some points from source and target can absent in mapping
// source, target - arrays of points. Target array size >= sourse array size
appendMapping(mapping, source, target) {
const targetMatched = Object.values(mapping).map((x) => +x);
const sourceMatched = Object.keys(mapping).map((x) => +x);
const orderForReceive = [];
function findNeighbors(point) {
let prev = point;
let next = point;
if (!targetMatched.length) {
// Prevent infinity loop
throw new ScriptingError('Interpolation mapping is empty');
}
while (!targetMatched.includes(prev)) {
prev--;
if (prev < 0) {
prev = target.length - 1;
}
}
while (!targetMatched.includes(next)) {
next++;
if (next >= target.length) {
next = 0;
}
}
return [prev, next];
}
function computeOffset(point, prev, next) {
const pathPoints = [];
while (prev !== next) {
pathPoints.push(target[prev]);
prev++;
if (prev >= target.length) {
prev = 0;
}
}
pathPoints.push(target[next]);
let curveLength = 0;
let offset = 0;
let iCrossed = false;
for (let k = 1; k < pathPoints.length; k++) {
const p1 = pathPoints[k];
const p2 = pathPoints[k - 1];
const distance = Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2));
if (!iCrossed) {
offset += distance;
}
curveLength += distance;
if (target[point] === pathPoints[k]) {
iCrossed = true;
}
}
if (!curveLength) {
return 0;
}
return offset / curveLength;
}
for (let i = 0; i < target.length; i++) {
const index = targetMatched.indexOf(i);
if (index === -1) {
// We have to find a neighbours which have been mapped
const [prev, next] = findNeighbors(i);
// Now compute edge offset
const offset = computeOffset(i, prev, next);
// Get point between two neighbors points
const prevPoint = target[prev];
const nextPoint = target[next];
const autoPoint = {
x: prevPoint.x + (nextPoint.x - prevPoint.x) * offset,
y: prevPoint.y + (nextPoint.y - prevPoint.y) * offset,
};
// Put it into matched
source.push(autoPoint);
mapping[source.length - 1] = i;
orderForReceive.push(source.length - 1);
} else {
orderForReceive.push(sourceMatched[index]);
}
}
return orderForReceive;
}
}
class PolygonTrack extends PolyTrack {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.POLYGON;
for (const shape of Object.values(this.shapes)) {
checkNumberOfPoints(this.shapeType, shape.points);
}
}
}
class PolylineTrack extends PolyTrack {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.POLYLINE;
for (const shape of Object.values(this.shapes)) {
checkNumberOfPoints(this.shapeType, shape.points);
}
}
}
class PointsTrack extends PolyTrack {
constructor(data, clientID, color, injection) {
super(data, clientID, color, injection);
this.shapeType = ObjectShape.POINTS;
for (const shape of Object.values(this.shapes)) {
checkNumberOfPoints(this.shapeType, shape.points);
}
}
}
RectangleTrack.distance = RectangleShape.distance;
PolygonTrack.distance = PolygonShape.distance;
PolylineTrack.distance = PolylineShape.distance;
PointsTrack.distance = PointsShape.distance;
module.exports = {
RectangleShape,
PolygonShape,
PolylineShape,
PointsShape,
RectangleTrack,
PolygonTrack,
PolylineTrack,
PointsTrack,
Track,
Shape,
Tag,
objectStateFactory,
};
})();