You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
5.7 KiB
Python

# Copyright (C) 2021-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import zipfile
from tempfile import TemporaryDirectory
from datumaro.components.annotation import (AnnotationType, Caption, Label,
LabelCategories)
from datumaro.components.dataset import Dataset
from datumaro.components.extractor import ItemTransform
from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor,
import_dm_annotations)
from cvat.apps.dataset_manager.util import make_zip_archive
from .transformations import RotatedBoxesToPolygons
from .registry import dm_env, exporter, importer
class AddLabelToAnns(ItemTransform):
def __init__(self, extractor, label):
super().__init__(extractor)
assert isinstance(label, str)
self._categories = {}
label_cat = self._extractor.categories().get(AnnotationType.label)
if not label_cat:
label_cat = LabelCategories()
self._label = label_cat.add(label)
self._categories[AnnotationType.label] = label_cat
def categories(self):
return self._categories
def transform_item(self, item):
annotations = item.annotations
for ann in annotations:
if ann.type in [AnnotationType.polygon,
AnnotationType.bbox, AnnotationType.mask]:
ann.label = self._label
return item.wrap(annotations=annotations)
class CaptionToLabel(ItemTransform):
def __init__(self, extractor, label):
super().__init__(extractor)
assert isinstance(label, str)
self._categories = {}
label_cat = self._extractor.categories().get(AnnotationType.label)
if not label_cat:
label_cat = LabelCategories()
self._label = label_cat.add(label)
self._categories[AnnotationType.label] = label_cat
def categories(self):
return self._categories
def transform_item(self, item):
annotations = item.annotations
captions = [ann for ann in annotations
if ann.type == AnnotationType.caption]
for ann in captions:
annotations.append(Label(self._label,
attributes={'text': ann.caption}))
annotations.remove(ann)
return item.wrap(annotations=annotations)
class LabelToCaption(ItemTransform):
def transform_item(self, item):
annotations = item.annotations
anns = [p for p in annotations
if 'text' in p.attributes]
for ann in anns:
annotations.append(Caption(ann.attributes['text']))
annotations.remove(ann)
return item.wrap(annotations=annotations)
@exporter(name='ICDAR Recognition', ext='ZIP', version='1.0')
def _export_recognition(dst_file, instance_data, save_images=False):
dataset = Dataset.from_extractors(GetCVATDataExtractor(
instance_data, include_images=save_images), env=dm_env)
dataset.transform(LabelToCaption)
with TemporaryDirectory() as temp_dir:
dataset.export(temp_dir, 'icdar_word_recognition', save_images=save_images)
make_zip_archive(temp_dir, dst_file)
@importer(name='ICDAR Recognition', ext='ZIP', version='1.0')
def _import(src_file, instance_data, load_data_callback=None):
with TemporaryDirectory() as tmp_dir:
zipfile.ZipFile(src_file).extractall(tmp_dir)
dataset = Dataset.import_from(tmp_dir, 'icdar_word_recognition', env=dm_env)
dataset.transform(CaptionToLabel, label='icdar')
if load_data_callback is not None:
load_data_callback(dataset, instance_data)
import_dm_annotations(dataset, instance_data)
@exporter(name='ICDAR Localization', ext='ZIP', version='1.0')
def _export_localization(dst_file, instance_data, save_images=False):
dataset = Dataset.from_extractors(GetCVATDataExtractor(
instance_data, include_images=save_images), env=dm_env)
with TemporaryDirectory() as temp_dir:
dataset.export(temp_dir, 'icdar_text_localization', save_images=save_images)
make_zip_archive(temp_dir, dst_file)
@importer(name='ICDAR Localization', ext='ZIP', version='1.0')
def _import(src_file, instance_data, load_data_callback=None):
with TemporaryDirectory() as tmp_dir:
zipfile.ZipFile(src_file).extractall(tmp_dir)
dataset = Dataset.import_from(tmp_dir, 'icdar_text_localization', env=dm_env)
dataset.transform(AddLabelToAnns, label='icdar')
if load_data_callback is not None:
load_data_callback(dataset, instance_data)
import_dm_annotations(dataset, instance_data)
@exporter(name='ICDAR Segmentation', ext='ZIP', version='1.0')
def _export_segmentation(dst_file, instance_data, save_images=False):
dataset = Dataset.from_extractors(GetCVATDataExtractor(
instance_data, include_images=save_images), env=dm_env)
with TemporaryDirectory() as temp_dir:
dataset.transform(RotatedBoxesToPolygons)
dataset.transform('polygons_to_masks')
dataset.transform('boxes_to_masks')
dataset.transform('merge_instance_segments')
dataset.export(temp_dir, 'icdar_text_segmentation', save_images=save_images)
make_zip_archive(temp_dir, dst_file)
@importer(name='ICDAR Segmentation', ext='ZIP', version='1.0')
def _import(src_file, instance_data, load_data_callback=None):
with TemporaryDirectory() as tmp_dir:
zipfile.ZipFile(src_file).extractall(tmp_dir)
dataset = Dataset.import_from(tmp_dir, 'icdar_text_segmentation', env=dm_env)
dataset.transform(AddLabelToAnns, label='icdar')
dataset.transform('masks_to_polygons')
if load_data_callback is not None:
load_data_callback(dataset, instance_data)
import_dm_annotations(dataset, instance_data)