You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
3.1 KiB
Python

# Copyright (C) 2021-2022 Intel Corporation
# Copyright (C) 2022 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import zipfile
from tempfile import TemporaryDirectory
from datumaro.components.annotation import (AnnotationType, Label,
LabelCategories)
from datumaro.components.dataset import Dataset
from datumaro.components.extractor import ItemTransform
from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor,
import_dm_annotations)
from cvat.apps.dataset_manager.util import make_zip_archive
from .registry import dm_env, exporter, importer
class AttrToLabelAttr(ItemTransform):
def __init__(self, extractor, label):
super().__init__(extractor)
assert isinstance(label, str)
self._categories = {}
label_cat = self._extractor.categories().get(AnnotationType.label)
if not label_cat:
label_cat = LabelCategories()
self._label = label_cat.add(label)
self._categories[AnnotationType.label] = label_cat
def categories(self):
return self._categories
def transform_item(self, item):
annotations = list(item.annotations)
attributes = item.attributes
if item.attributes:
annotations.append(Label(self._label, attributes=item.attributes))
attributes = {}
return item.wrap(annotations=annotations, attributes=attributes)
class LabelAttrToAttr(ItemTransform):
def __init__(self, extractor, label):
super().__init__(extractor)
assert isinstance(label, str)
label_cat = self._extractor.categories().get(AnnotationType.label)
self._label = label_cat.find(label)[0]
def transform_item(self, item):
annotations = list(item.annotations)
attributes = dict(item.attributes)
if self._label is not None:
labels = [ann for ann in annotations
if ann.type == AnnotationType.label \
and ann.label == self._label]
if len(labels) == 1:
attributes.update(labels[0].attributes)
annotations.remove(labels[0])
return item.wrap(annotations=annotations, attributes=attributes)
@exporter(name='Market-1501', ext='ZIP', version='1.0')
def _export(dst_file, instance_data, save_images=False):
dataset = Dataset.from_extractors(GetCVATDataExtractor(
instance_data, include_images=save_images), env=dm_env)
with TemporaryDirectory() as temp_dir:
dataset.transform(LabelAttrToAttr, label='market-1501')
dataset.export(temp_dir, 'market1501', save_images=save_images)
make_zip_archive(temp_dir, dst_file)
@importer(name='Market-1501', ext='ZIP', version='1.0')
def _import(src_file, instance_data, load_data_callback=None):
with TemporaryDirectory() as tmp_dir:
zipfile.ZipFile(src_file).extractall(tmp_dir)
dataset = Dataset.import_from(tmp_dir, 'market1501', env=dm_env)
dataset.transform(AttrToLabelAttr, label='market-1501')
if load_data_callback is not None:
load_data_callback(dataset, instance_data)
import_dm_annotations(dataset, instance_data)