You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

117 lines
4.3 KiB
Python

import numpy as np
import os.path as osp
from unittest import TestCase
from datumaro.components.extractor import (Extractor, DatasetItem,
AnnotationType, Bbox, LabelCategories,
)
from datumaro.plugins.yolo_format.importer import YoloImporter
from datumaro.plugins.yolo_format.converter import YoloConverter
from datumaro.util.image import Image, save_image
from datumaro.util.test_utils import TestDir, compare_datasets
class YoloFormatTest(TestCase):
def test_can_save_and_load(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 2, 4, 2, label=2),
Bbox(0, 1, 2, 3, label=4),
]),
DatasetItem(id=2, subset='train', image=np.ones((10, 10, 3)),
annotations=[
Bbox(0, 2, 4, 2, label=2),
Bbox(3, 3, 2, 3, label=4),
Bbox(2, 1, 2, 3, label=4),
]),
DatasetItem(id=3, subset='valid', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 1, 5, 2, label=2),
Bbox(0, 2, 3, 2, label=5),
Bbox(0, 2, 4, 2, label=6),
Bbox(0, 7, 3, 2, label=7),
]),
])
def categories(self):
label_categories = LabelCategories()
for i in range(10):
label_categories.add('label_' + str(i))
return {
AnnotationType.label: label_categories,
}
with TestDir() as test_dir:
source_dataset = TestExtractor()
YoloConverter(save_images=True)(source_dataset, test_dir)
parsed_dataset = YoloImporter()(test_dir).make_dataset()
compare_datasets(self, source_dataset, parsed_dataset)
def test_can_save_dataset_with_image_info(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train',
image=Image(path='1.jpg', size=(10, 15)),
annotations=[
Bbox(0, 2, 4, 2, label=2),
Bbox(3, 3, 2, 3, label=4),
]),
])
def categories(self):
label_categories = LabelCategories()
for i in range(10):
label_categories.add('label_' + str(i))
return {
AnnotationType.label: label_categories,
}
with TestDir() as test_dir:
source_dataset = TestExtractor()
YoloConverter()(source_dataset, test_dir)
save_image(osp.join(test_dir, 'obj_train_data', '1.jpg'),
np.ones((10, 15, 3))) # put the image for dataset
parsed_dataset = YoloImporter()(test_dir).make_dataset()
compare_datasets(self, source_dataset, parsed_dataset)
def test_can_load_dataset_with_exact_image_info(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train',
image=Image(path='1.jpg', size=(10, 15)),
annotations=[
Bbox(0, 2, 4, 2, label=2),
Bbox(3, 3, 2, 3, label=4),
]),
])
def categories(self):
label_categories = LabelCategories()
for i in range(10):
label_categories.add('label_' + str(i))
return {
AnnotationType.label: label_categories,
}
with TestDir() as test_dir:
source_dataset = TestExtractor()
YoloConverter()(source_dataset, test_dir)
parsed_dataset = YoloImporter()(test_dir,
image_info={'1': (10, 15)}).make_dataset()
compare_datasets(self, source_dataset, parsed_dataset)