You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.2 KiB
Python
69 lines
2.2 KiB
Python
# Copyright (C) 2021-2022 Intel Corporation
|
|
#
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
import torch
|
|
import numpy as np
|
|
import cv2
|
|
import os
|
|
|
|
from isegm.inference import utils
|
|
from isegm.inference.predictors import get_predictor
|
|
from isegm.inference.clicker import Clicker, Click
|
|
|
|
def convert_mask_to_polygon(mask):
|
|
mask = np.array(mask, dtype=np.uint8)
|
|
cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)
|
|
contours = None
|
|
if int(cv2.__version__.split('.')[0]) > 3:
|
|
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
|
|
else:
|
|
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]
|
|
|
|
contours = max(contours, key=lambda arr: arr.size)
|
|
if contours.shape.count(1):
|
|
contours = np.squeeze(contours)
|
|
if contours.size < 3 * 2:
|
|
raise Exception('Less then three point have been detected. Can not build a polygon.')
|
|
|
|
polygon = []
|
|
for point in contours:
|
|
polygon.append([int(point[0]), int(point[1])])
|
|
|
|
return polygon
|
|
|
|
class ModelHandler:
|
|
def __init__(self):
|
|
torch.backends.cudnn.deterministic = True
|
|
base_dir = os.path.abspath(os.environ.get("MODEL_PATH", "/opt/nuclio/hrnet"))
|
|
model_path = os.path.join(base_dir)
|
|
|
|
self.net = None
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
checkpoint_path = utils.find_checkpoint(model_path, "coco_lvis_h18_itermask.pth")
|
|
self.net = utils.load_is_model(checkpoint_path, self.device)
|
|
|
|
def handle(self, image, pos_points, neg_points, threshold):
|
|
image_nd = np.array(image)
|
|
|
|
clicker = Clicker()
|
|
for x, y in pos_points:
|
|
click = Click(is_positive=True, coords=(y, x))
|
|
clicker.add_click(click)
|
|
|
|
for x, y in neg_points:
|
|
click = Click(is_positive=False, coords=(y, x))
|
|
clicker.add_click(click)
|
|
|
|
predictor = get_predictor(self.net, 'NoBRS', device=self.device, prob_thresh=0.49)
|
|
predictor.set_input_image(image_nd)
|
|
|
|
object_prob = predictor.get_prediction(clicker)
|
|
if self.device == 'cuda':
|
|
torch.cuda.empty_cache()
|
|
object_mask = object_prob > threshold
|
|
polygon = convert_mask_to_polygon(object_mask)
|
|
|
|
return polygon
|