You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

486 lines
18 KiB
Python

import logging as log
import numpy as np
from unittest import TestCase
from datumaro.components.extractor import (Extractor, DatasetItem,
Mask, Polygon, PolyLine, Points, Bbox, Label,
LabelCategories, MaskCategories, AnnotationType
)
import datumaro.util.mask_tools as mask_tools
import datumaro.plugins.transforms as transforms
from datumaro.util.test_utils import compare_datasets
class TransformsTest(TestCase):
def test_reindex(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=10),
DatasetItem(id=10, subset='train'),
DatasetItem(id='a', subset='val'),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=5),
DatasetItem(id=6, subset='train'),
DatasetItem(id=7, subset='val'),
])
actual = transforms.Reindex(SrcExtractor(), start=5)
compare_datasets(self, DstExtractor(), actual)
def test_mask_to_polygons(self):
class SrcExtractor(Extractor):
def __iter__(self):
items = [
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
annotations=[
Mask(np.array([
[0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]),
),
]
),
]
return iter(items)
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
annotations=[
Polygon([3.0, 2.5, 1.0, 0.0, 3.5, 0.0, 3.0, 2.5]),
Polygon([5.0, 3.5, 4.5, 0.0, 8.0, 0.0, 5.0, 3.5]),
]
),
])
actual = transforms.MasksToPolygons(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
def test_mask_to_polygons_small_polygons_message(self):
class SrcExtractor(Extractor):
def __iter__(self):
items = [
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
annotations=[
Mask(np.array([
[0, 0, 0],
[0, 1, 0],
[0, 0, 0],
]),
),
]
),
]
return iter(items)
class DstExtractor(Extractor):
def __iter__(self):
return iter([ DatasetItem(id=1, image=np.zeros((5, 10, 3))), ])
with self.assertLogs(level=log.DEBUG) as logs:
actual = transforms.MasksToPolygons(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
self.assertRegex('\n'.join(logs.output), 'too small polygons')
def test_polygons_to_masks(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
annotations=[
Polygon([0, 0, 4, 0, 4, 4]),
Polygon([5, 0, 9, 0, 5, 5]),
]
),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 10, 3)),
annotations=[
Mask(np.array([
[0, 0, 0, 0, 0, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]),
),
Mask(np.array([
[0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]),
),
]
),
])
actual = transforms.PolygonsToMasks(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
def test_crop_covered_segments(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
# The mask is partially covered by the polygon
Mask(np.array([
[0, 0, 1, 1, 1],
[0, 0, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0]],
),
z_order=0),
Polygon([1, 1, 4, 1, 4, 4, 1, 4],
z_order=1),
]
),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Mask(np.array([
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 0],
[1, 1, 1, 0, 0]],
),
z_order=0),
Polygon([1, 1, 4, 1, 4, 4, 1, 4],
z_order=1),
]
),
])
actual = transforms.CropCoveredSegments(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
def test_merge_instance_segments(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Mask(np.array([
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 0],
[1, 1, 1, 0, 0]],
),
z_order=0, group=1),
Polygon([1, 1, 4, 1, 4, 4, 1, 4],
z_order=1, group=1),
Polygon([0, 0, 0, 2, 2, 2, 2, 0],
z_order=1),
]
),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Mask(np.array([
[0, 0, 1, 1, 1],
[0, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 0],
[1, 1, 1, 0, 0]],
),
z_order=0, group=1),
Mask(np.array([
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
),
z_order=1),
]
),
])
actual = transforms.MergeInstanceSegments(SrcExtractor(),
include_polygons=True)
compare_datasets(self, DstExtractor(), actual)
def test_map_subsets(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='a'),
DatasetItem(id=2, subset='b'),
DatasetItem(id=3, subset='c'),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset=''),
DatasetItem(id=2, subset='a'),
DatasetItem(id=3, subset='c'),
])
actual = transforms.MapSubsets(SrcExtractor(),
{ 'a': '', 'b': 'a' })
compare_datasets(self, DstExtractor(), actual)
def test_shapes_to_boxes(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Mask(np.array([
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 0],
[1, 1, 1, 0, 0]],
), id=1),
Polygon([1, 1, 4, 1, 4, 4, 1, 4], id=2),
PolyLine([1, 1, 2, 1, 2, 2, 1, 2], id=3),
Points([2, 2, 4, 2, 4, 4, 2, 4], id=4),
]
),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Bbox(0, 0, 4, 4, id=1),
Bbox(1, 1, 3, 3, id=2),
Bbox(1, 1, 1, 1, id=3),
Bbox(2, 2, 2, 2, id=4),
]
),
])
actual = transforms.ShapesToBoxes(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
def test_id_from_image(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image='path.jpg'),
DatasetItem(id=2),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id='path', image='path.jpg'),
DatasetItem(id=2),
])
actual = transforms.IdFromImageName(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
def test_boxes_to_masks(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Bbox(0, 0, 3, 3, z_order=1),
Bbox(0, 0, 3, 1, z_order=2),
Bbox(0, 2, 3, 1, z_order=3),
]
),
])
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, image=np.zeros((5, 5, 3)),
annotations=[
Mask(np.array([
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
),
z_order=1),
Mask(np.array([
[1, 1, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
),
z_order=2),
Mask(np.array([
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[1, 1, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
),
z_order=3),
]
),
])
actual = transforms.BoxesToMasks(SrcExtractor())
compare_datasets(self, DstExtractor(), actual)
def test_random_split(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset="a"),
DatasetItem(id=2, subset="a"),
DatasetItem(id=3, subset="b"),
DatasetItem(id=4, subset="b"),
DatasetItem(id=5, subset="b"),
DatasetItem(id=6, subset=""),
DatasetItem(id=7, subset=""),
])
actual = transforms.RandomSplit(SrcExtractor(), splits=[
('train', 4.0 / 7.0),
('test', 3.0 / 7.0),
])
self.assertEqual(4, len(actual.get_subset('train')))
self.assertEqual(3, len(actual.get_subset('test')))
def test_random_split_gives_error_on_wrong_ratios(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([DatasetItem(id=1)])
with self.assertRaises(Exception):
transforms.RandomSplit(SrcExtractor(), splits=[
('train', 0.5),
('test', 0.7),
])
with self.assertRaises(Exception):
transforms.RandomSplit(SrcExtractor(), splits=[])
with self.assertRaises(Exception):
transforms.RandomSplit(SrcExtractor(), splits=[
('train', -0.5),
('test', 1.5),
])
def test_remap_labels(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, annotations=[
# Should be remapped
Label(1),
Bbox(1, 2, 3, 4, label=2),
Mask(image=np.array([1]), label=3),
# Should be kept
Polygon([1, 1, 2, 2, 3, 4], label=4),
PolyLine([1, 3, 4, 2, 5, 6], label=None)
]),
])
def categories(self):
label_cat = LabelCategories()
label_cat.add('label0')
label_cat.add('label1')
label_cat.add('label2')
label_cat.add('label3')
label_cat.add('label4')
mask_cat = MaskCategories(
colormap=mask_tools.generate_colormap(5))
return {
AnnotationType.label: label_cat,
AnnotationType.mask: mask_cat,
}
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, annotations=[
Label(1),
Bbox(1, 2, 3, 4, label=0),
Mask(image=np.array([1]), label=1),
Polygon([1, 1, 2, 2, 3, 4], label=2),
PolyLine([1, 3, 4, 2, 5, 6], label=None)
]),
])
def categories(self):
label_cat = LabelCategories()
label_cat.add('label0')
label_cat.add('label9')
label_cat.add('label4')
mask_cat = MaskCategories(colormap={
k: v for k, v in mask_tools.generate_colormap(5).items()
if k in { 0, 1, 3, 4 }
})
return {
AnnotationType.label: label_cat,
AnnotationType.mask: mask_cat,
}
actual = transforms.RemapLabels(SrcExtractor(), mapping={
'label1': 'label9',
'label2': 'label0',
'label3': 'label9',
}, default='keep')
compare_datasets(self, DstExtractor(), actual)
def test_remap_labels_delete_unspecified(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([ DatasetItem(id=1, annotations=[ Label(0) ]) ])
def categories(self):
label_cat = LabelCategories()
label_cat.add('label0')
return { AnnotationType.label: label_cat }
class DstExtractor(Extractor):
def __iter__(self):
return iter([ DatasetItem(id=1, annotations=[]) ])
def categories(self):
return { AnnotationType.label: LabelCategories() }
actual = transforms.RemapLabels(SrcExtractor(),
mapping={}, default='delete')
compare_datasets(self, DstExtractor(), actual)