You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
35 lines
1.1 KiB
Python
35 lines
1.1 KiB
Python
import json
|
|
import base64
|
|
from PIL import Image
|
|
import io
|
|
from model_handler import ModelHandler
|
|
import yaml
|
|
|
|
def init_context(context):
|
|
context.logger.info("Init context... 0%")
|
|
|
|
# Read labels
|
|
functionconfig = yaml.safe_load(open("/opt/nuclio/function.yaml"))
|
|
labels_spec = functionconfig['metadata']['annotations']['spec']
|
|
labels = {item['id']: item['name'] for item in json.loads(labels_spec)}
|
|
|
|
# Read the DL model
|
|
model = ModelHandler(labels)
|
|
setattr(context.user_data, 'model', model)
|
|
|
|
context.logger.info("Init context...100%")
|
|
|
|
def handler(context, event):
|
|
context.logger.info("Run text-detection-0004 model")
|
|
data = event.body
|
|
buf = io.BytesIO(base64.b64decode(data["image"].encode('utf-8')))
|
|
pixel_threshold = float(data.get("pixel_threshold", 0.8))
|
|
link_threshold = float(data.get("link_threshold", 0.8))
|
|
image = Image.open(buf)
|
|
|
|
results = context.user_data.model.infer(image,
|
|
pixel_threshold, link_threshold)
|
|
|
|
return context.Response(body=json.dumps(results), headers={},
|
|
content_type='application/json', status_code=200)
|