You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

120 lines
4.4 KiB
Python

import numpy as np
from unittest import TestCase
from datumaro.components.extractor import (Extractor, DatasetItem,
AnnotationType, Bbox, Mask, Polygon, LabelCategories
)
from datumaro.plugins.labelme_format import LabelMeImporter, LabelMeConverter
from datumaro.util.test_utils import TestDir, compare_datasets
class LabelMeConverterTest(TestCase):
def _test_save_and_load(self, source_dataset, converter, test_dir,
target_dataset=None, importer_args=None):
converter(source_dataset, test_dir)
if importer_args is None:
importer_args = {}
parsed_dataset = LabelMeImporter()(test_dir, **importer_args) \
.make_dataset()
if target_dataset is None:
target_dataset = source_dataset
compare_datasets(self, expected=target_dataset, actual=parsed_dataset)
def test_can_save_and_load(self):
class SrcExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train',
image=np.ones((16, 16, 3)),
annotations=[
Bbox(0, 4, 4, 8, label=2, group=2),
Polygon([0, 4, 4, 4, 5, 6], label=3, attributes={
'occluded': True
}),
Mask(np.array([[0, 1], [1, 0], [1, 1]]), group=2),
Bbox(1, 2, 3, 4, group=3),
Mask(np.array([[0, 0], [0, 0], [1, 1]]), group=3,
attributes={ 'occluded': True }
),
]
),
])
def categories(self):
label_cat = LabelCategories()
for label in range(10):
label_cat.add('label_' + str(label))
return {
AnnotationType.label: label_cat,
}
class DstExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train',
image=np.ones((16, 16, 3)),
annotations=[
Bbox(0, 4, 4, 8, label=0, group=2, attributes={
'occluded': False
}),
Polygon([0, 4, 4, 4, 5, 6], label=1, attributes={
'occluded': True
}),
Mask(np.array([[0, 1], [1, 0], [1, 1]]), group=2,
attributes={ 'occluded': False }
),
Bbox(1, 2, 3, 4, group=1, attributes={
'occluded': False
}),
Mask(np.array([[0, 0], [0, 0], [1, 1]]), group=1,
attributes={ 'occluded': True }
),
]
),
])
def categories(self):
label_cat = LabelCategories()
label_cat.add('label_2')
label_cat.add('label_3')
return {
AnnotationType.label: label_cat,
}
with TestDir() as test_dir:
self._test_save_and_load(
SrcExtractor(), LabelMeConverter(save_images=True),
test_dir, target_dataset=DstExtractor())
class LabelMeImporterTest(TestCase):
def test_can_detect(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train',
image=np.ones((16, 16, 3)),
annotations=[
Bbox(0, 4, 4, 8, label=2),
]
),
])
def categories(self):
label_cat = LabelCategories()
for label in range(10):
label_cat.add('label_' + str(label))
return {
AnnotationType.label: label_cat,
}
def generate_dummy(path):
LabelMeConverter()(TestExtractor(), save_dir=path)
with TestDir() as test_dir:
generate_dummy(test_dir)
self.assertTrue(LabelMeImporter.detect(test_dir))