You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
473 lines
17 KiB
Python
473 lines
17 KiB
Python
import base64
|
|
import collections
|
|
import json
|
|
import os
|
|
import shutil
|
|
import types
|
|
import zipfile
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from pathlib import Path
|
|
from typing import Callable, Container, Dict, FrozenSet, List, Mapping, Optional, Type, TypeVar
|
|
|
|
import attrs
|
|
import attrs.validators
|
|
import PIL.Image
|
|
import torch
|
|
import torch.utils.data
|
|
import torchvision.datasets
|
|
from typing_extensions import TypedDict
|
|
|
|
import cvat_sdk.core
|
|
import cvat_sdk.core.exceptions
|
|
import cvat_sdk.models as models
|
|
from cvat_sdk.api_client.model_utils import to_json
|
|
from cvat_sdk.core.utils import atomic_writer
|
|
|
|
_ModelType = TypeVar("_ModelType")
|
|
|
|
_NUM_DOWNLOAD_THREADS = 4
|
|
|
|
|
|
class UnsupportedDatasetError(cvat_sdk.core.exceptions.CvatSdkException):
|
|
pass
|
|
|
|
|
|
@attrs.frozen
|
|
class FrameAnnotations:
|
|
"""
|
|
Contains annotations that pertain to a single frame.
|
|
"""
|
|
|
|
tags: List[models.LabeledImage] = attrs.Factory(list)
|
|
shapes: List[models.LabeledShape] = attrs.Factory(list)
|
|
|
|
|
|
@attrs.frozen
|
|
class Target:
|
|
"""
|
|
Non-image data for a dataset sample.
|
|
"""
|
|
|
|
annotations: FrameAnnotations
|
|
"""Annotations for the frame corresponding to the sample."""
|
|
|
|
label_id_to_index: Mapping[int, int]
|
|
"""
|
|
A mapping from label_id values in `LabeledImage` and `LabeledShape` objects
|
|
to an integer index. This mapping is consistent across all samples for a given task.
|
|
"""
|
|
|
|
|
|
def _get_server_dir(client: cvat_sdk.core.Client) -> Path:
|
|
# Base64-encode the name to avoid FS-unsafe characters (like slashes)
|
|
server_dir_name = base64.urlsafe_b64encode(client.api_map.host.encode()).rstrip(b"=").decode()
|
|
return client.config.cache_dir / f"servers/{server_dir_name}"
|
|
|
|
|
|
class TaskVisionDataset(torchvision.datasets.VisionDataset):
|
|
"""
|
|
Represents a task on a CVAT server as a PyTorch Dataset.
|
|
|
|
This dataset contains one sample for each frame in the task, in the same
|
|
order as the frames are in the task. Deleted frames are omitted.
|
|
Before transforms are applied, each sample is a tuple of
|
|
(image, target), where:
|
|
|
|
* image is a `PIL.Image.Image` object for the corresponding frame.
|
|
* target is a `Target` object containing annotations for the frame.
|
|
|
|
This class caches all data and annotations for the task on the local file system
|
|
during construction. If the task is updated on the server, the cache is updated.
|
|
|
|
Limitations:
|
|
|
|
* Only tasks with image (not video) data are supported at the moment.
|
|
* Track annotations are currently not accessible.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
client: cvat_sdk.core.Client,
|
|
task_id: int,
|
|
*,
|
|
transforms: Optional[Callable] = None,
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
label_name_to_index: Mapping[str, int] = None,
|
|
) -> None:
|
|
"""
|
|
Creates a dataset corresponding to the task with ID `task_id` on the
|
|
server that `client` is connected to.
|
|
|
|
`transforms`, `transform` and `target_transforms` are optional transformation
|
|
functions; see the documentation for `torchvision.datasets.VisionDataset` for
|
|
more information.
|
|
|
|
`label_name_to_index` affects the `label_id_to_index` member in `Target` objects
|
|
returned by the dataset. If it is specified, then it must contain an entry for
|
|
each label name in the task. The `label_id_to_index` mapping will be constructed
|
|
so that each label will be mapped to the index corresponding to the label's name
|
|
in `label_name_to_index`.
|
|
|
|
If `label_name_to_index` is unspecified or set to `None`, then `label_id_to_index`
|
|
will map each label ID to a distinct integer in the range [0, `num_labels`), where
|
|
`num_labels` is the number of labels defined in the task. This mapping will be
|
|
generally unpredictable, but consistent for a given task.
|
|
"""
|
|
|
|
self._logger = client.logger
|
|
|
|
self._logger.info(f"Fetching task {task_id}...")
|
|
self._task = client.tasks.retrieve(task_id)
|
|
|
|
if not self._task.size or not self._task.data_chunk_size:
|
|
raise UnsupportedDatasetError("The task has no data")
|
|
|
|
if self._task.data_original_chunk_type != "imageset":
|
|
raise UnsupportedDatasetError(
|
|
f"{self.__class__.__name__} only supports tasks with image chunks;"
|
|
f" current chunk type is {self._task.data_original_chunk_type!r}"
|
|
)
|
|
|
|
self._task_dir = _get_server_dir(client) / f"tasks/{self._task.id}"
|
|
self._initialize_task_dir()
|
|
|
|
super().__init__(
|
|
os.fspath(self._task_dir),
|
|
transforms=transforms,
|
|
transform=transform,
|
|
target_transform=target_transform,
|
|
)
|
|
|
|
data_meta = self._ensure_model(
|
|
"data_meta.json", models.DataMetaRead, self._task.get_meta, "data metadata"
|
|
)
|
|
self._active_frame_indexes = sorted(
|
|
set(range(self._task.size)) - set(data_meta.deleted_frames)
|
|
)
|
|
|
|
self._logger.info("Downloading chunks...")
|
|
|
|
self._chunk_dir = self._task_dir / "chunks"
|
|
self._chunk_dir.mkdir(exist_ok=True, parents=True)
|
|
|
|
needed_chunks = {
|
|
index // self._task.data_chunk_size for index in self._active_frame_indexes
|
|
}
|
|
|
|
with ThreadPoolExecutor(_NUM_DOWNLOAD_THREADS) as pool:
|
|
for _ in pool.map(self._ensure_chunk, sorted(needed_chunks)):
|
|
# just need to loop through all results so that any exceptions are propagated
|
|
pass
|
|
|
|
self._logger.info("All chunks downloaded")
|
|
|
|
if label_name_to_index is None:
|
|
self._label_id_to_index = types.MappingProxyType(
|
|
{
|
|
label.id: label_index
|
|
for label_index, label in enumerate(
|
|
sorted(self._task.labels, key=lambda l: l.id)
|
|
)
|
|
}
|
|
)
|
|
else:
|
|
self._label_id_to_index = types.MappingProxyType(
|
|
{label.id: label_name_to_index[label.name] for label in self._task.labels}
|
|
)
|
|
|
|
annotations = self._ensure_model(
|
|
"annotations.json", models.LabeledData, self._task.get_annotations, "annotations"
|
|
)
|
|
|
|
self._frame_annotations: Dict[int, FrameAnnotations] = collections.defaultdict(
|
|
FrameAnnotations
|
|
)
|
|
|
|
for tag in annotations.tags:
|
|
self._frame_annotations[tag.frame].tags.append(tag)
|
|
|
|
for shape in annotations.shapes:
|
|
self._frame_annotations[shape.frame].shapes.append(shape)
|
|
|
|
# TODO: tracks?
|
|
|
|
def _initialize_task_dir(self) -> None:
|
|
task_json_path = self._task_dir / "task.json"
|
|
|
|
try:
|
|
with open(task_json_path, "rb") as task_json_file:
|
|
saved_task = models.TaskRead._new_from_openapi_data(**json.load(task_json_file))
|
|
except Exception:
|
|
self._logger.info("Task is not yet cached or the cache is corrupted")
|
|
|
|
# If the cache was corrupted, the directory might already be there; clear it.
|
|
if self._task_dir.exists():
|
|
shutil.rmtree(self._task_dir)
|
|
else:
|
|
if saved_task.updated_date < self._task.updated_date:
|
|
self._logger.info(
|
|
"Task has been updated on the server since it was cached; purging the cache"
|
|
)
|
|
shutil.rmtree(self._task_dir)
|
|
|
|
self._task_dir.mkdir(exist_ok=True, parents=True)
|
|
|
|
with atomic_writer(task_json_path, "w", encoding="UTF-8") as task_json_file:
|
|
json.dump(to_json(self._task._model), task_json_file, indent=4)
|
|
print(file=task_json_file) # add final newline
|
|
|
|
def _ensure_chunk(self, chunk_index: int) -> None:
|
|
chunk_path = self._chunk_dir / f"{chunk_index}.zip"
|
|
if chunk_path.exists():
|
|
return # already downloaded previously
|
|
|
|
self._logger.info(f"Downloading chunk #{chunk_index}...")
|
|
|
|
with atomic_writer(chunk_path, "wb") as chunk_file:
|
|
self._task.download_chunk(chunk_index, chunk_file, quality="original")
|
|
|
|
def _ensure_model(
|
|
self,
|
|
filename: str,
|
|
model_type: Type[_ModelType],
|
|
download: Callable[[], _ModelType],
|
|
model_description: str,
|
|
) -> _ModelType:
|
|
path = self._task_dir / filename
|
|
|
|
try:
|
|
with open(path, "rb") as f:
|
|
model = model_type._new_from_openapi_data(**json.load(f))
|
|
self._logger.info(f"Loaded {model_description} from cache")
|
|
return model
|
|
except FileNotFoundError:
|
|
pass
|
|
except Exception:
|
|
self._logger.warning(f"Failed to load {model_description} from cache", exc_info=True)
|
|
|
|
self._logger.info(f"Downloading {model_description}...")
|
|
model = download()
|
|
self._logger.info(f"Downloaded {model_description}")
|
|
|
|
with atomic_writer(path, "w", encoding="UTF-8") as f:
|
|
json.dump(to_json(model), f, indent=4)
|
|
print(file=f) # add final newline
|
|
|
|
return model
|
|
|
|
def __getitem__(self, sample_index: int):
|
|
"""
|
|
Returns the sample with index `sample_index`.
|
|
|
|
`sample_index` must satisfy the condition `0 <= sample_index < len(self)`.
|
|
"""
|
|
|
|
frame_index = self._active_frame_indexes[sample_index]
|
|
chunk_index = frame_index // self._task.data_chunk_size
|
|
member_index = frame_index % self._task.data_chunk_size
|
|
|
|
with zipfile.ZipFile(self._chunk_dir / f"{chunk_index}.zip", "r") as chunk_zip:
|
|
with chunk_zip.open(chunk_zip.infolist()[member_index]) as chunk_member:
|
|
sample_image = PIL.Image.open(chunk_member)
|
|
sample_image.load()
|
|
|
|
sample_target = Target(
|
|
annotations=self._frame_annotations[frame_index],
|
|
label_id_to_index=self._label_id_to_index,
|
|
)
|
|
|
|
if self.transforms:
|
|
sample_image, sample_target = self.transforms(sample_image, sample_target)
|
|
return sample_image, sample_target
|
|
|
|
def __len__(self) -> int:
|
|
"""Returns the number of samples in the dataset."""
|
|
return len(self._active_frame_indexes)
|
|
|
|
|
|
class ProjectVisionDataset(torchvision.datasets.VisionDataset):
|
|
"""
|
|
Represents a project on a CVAT server as a PyTorch Dataset.
|
|
|
|
The dataset contains one sample for each frame of each task in the project
|
|
(except for tasks that are filtered out - see the description of `task_filter`
|
|
in the constructor). The sequence of samples is formed by concatening sequences
|
|
of samples from all included tasks in an arbitrary order that's consistent
|
|
between executions. Each task's sequence of samples corresponds to the sequence
|
|
of frames on the server.
|
|
|
|
See `TaskVisionDataset` for information on sample format, caching, and
|
|
current limitations.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
client: cvat_sdk.core.Client,
|
|
project_id: int,
|
|
*,
|
|
transforms: Optional[Callable] = None,
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
label_name_to_index: Mapping[str, int] = None,
|
|
task_filter: Optional[Callable[[models.ITaskRead], bool]] = None,
|
|
include_subsets: Optional[Container[str]] = None,
|
|
) -> None:
|
|
"""
|
|
Creates a dataset corresponding to the project with ID `project_id` on the
|
|
server that `client` is connected to.
|
|
|
|
`transforms`, `transform` and `target_transforms` are optional transformation
|
|
functions; see the documentation for `torchvision.datasets.VisionDataset` for
|
|
more information.
|
|
|
|
See `TaskVisionDataset.__init__` for information on `label_name_to_index`.
|
|
|
|
By default, all of the project's tasks will be included in the dataset.
|
|
The following parameters can be specified to exclude some tasks:
|
|
|
|
* If `task_filter` is set to a callable object, it will be applied to every task.
|
|
Tasks for which it returns a false value will be excluded.
|
|
|
|
* If `include_subsets` is set to a container, then tasks whose subset is
|
|
not a member of this container will be excluded.
|
|
"""
|
|
|
|
self._logger = client.logger
|
|
|
|
self._logger.info(f"Fetching project {project_id}...")
|
|
project = client.projects.retrieve(project_id)
|
|
|
|
# We don't actually need to save anything to this directory (yet),
|
|
# but VisionDataset.__init__ requires a root, so make one.
|
|
# It could be useful in the future to store the project data for
|
|
# offline-only mode.
|
|
project_dir = _get_server_dir(client) / f"projects/{project_id}"
|
|
project_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
super().__init__(
|
|
os.fspath(project_dir),
|
|
transforms=transforms,
|
|
transform=transform,
|
|
target_transform=target_transform,
|
|
)
|
|
|
|
self._logger.info("Fetching project tasks...")
|
|
tasks = project.get_tasks()
|
|
|
|
if task_filter is not None:
|
|
tasks = list(filter(task_filter, tasks))
|
|
|
|
if include_subsets is not None:
|
|
tasks = [task for task in tasks if task.subset in include_subsets]
|
|
|
|
tasks.sort(key=lambda t: t.id) # ensure consistent order between executions
|
|
|
|
self._underlying = torch.utils.data.ConcatDataset(
|
|
[
|
|
TaskVisionDataset(client, task.id, label_name_to_index=label_name_to_index)
|
|
for task in tasks
|
|
]
|
|
)
|
|
|
|
def __getitem__(self, sample_index: int):
|
|
"""
|
|
Returns the sample with index `sample_index`.
|
|
|
|
`sample_index` must satisfy the condition `0 <= sample_index < len(self)`.
|
|
"""
|
|
|
|
sample_image, sample_target = self._underlying[sample_index]
|
|
|
|
if self.transforms:
|
|
sample_image, sample_target = self.transforms(sample_image, sample_target)
|
|
|
|
return sample_image, sample_target
|
|
|
|
def __len__(self) -> int:
|
|
"""Returns the number of samples in the dataset."""
|
|
return len(self._underlying)
|
|
|
|
|
|
@attrs.frozen
|
|
class ExtractSingleLabelIndex:
|
|
"""
|
|
A target transform that takes a `Target` object and produces a single label index
|
|
based on the tag in that object, as a 0-dimensional tensor.
|
|
|
|
This makes the dataset samples compatible with the image classification networks
|
|
in torchvision.
|
|
|
|
If the annotations contain no tags, or multiple tags, raises a `ValueError`.
|
|
"""
|
|
|
|
def __call__(self, target: Target) -> int:
|
|
tags = target.annotations.tags
|
|
if not tags:
|
|
raise ValueError("sample has no tags")
|
|
|
|
if len(tags) > 1:
|
|
raise ValueError("sample has multiple tags")
|
|
|
|
return torch.tensor(target.label_id_to_index[tags[0].label_id], dtype=torch.long)
|
|
|
|
|
|
class LabeledBoxes(TypedDict):
|
|
boxes: torch.Tensor
|
|
labels: torch.Tensor
|
|
|
|
|
|
_SUPPORTED_SHAPE_TYPES = frozenset(["rectangle", "polygon", "polyline", "points", "ellipse"])
|
|
|
|
|
|
@attrs.frozen
|
|
class ExtractBoundingBoxes:
|
|
"""
|
|
A target transform that takes a `Target` object and returns a dictionary compatible
|
|
with the object detection networks in torchvision.
|
|
|
|
The dictionary contains the following entries:
|
|
|
|
"boxes": a tensor with shape [N, 4], where each row represents a bounding box of a shape
|
|
in the annotations in the (xmin, ymin, xmax, ymax) format.
|
|
"labels": a tensor with shape [N] containing corresponding label indices.
|
|
|
|
Limitations:
|
|
|
|
* Only the following shape types are supported: rectangle, polygon, polyline,
|
|
points, ellipse.
|
|
* Rotated shapes are not supported.
|
|
|
|
Unsupported shapes will cause a `UnsupportedDatasetError` exception to be
|
|
raised unless they are filtered out by `include_shape_types`.
|
|
"""
|
|
|
|
include_shape_types: FrozenSet[str] = attrs.field(
|
|
converter=frozenset,
|
|
validator=attrs.validators.deep_iterable(attrs.validators.in_(_SUPPORTED_SHAPE_TYPES)),
|
|
kw_only=True,
|
|
)
|
|
"""Shapes whose type is not in this set will be ignored."""
|
|
|
|
def __call__(self, target: Target) -> LabeledBoxes:
|
|
boxes = []
|
|
labels = []
|
|
|
|
for shape in target.annotations.shapes:
|
|
if shape.type.value not in self.include_shape_types:
|
|
continue
|
|
|
|
if shape.rotation != 0:
|
|
raise UnsupportedDatasetError("Rotated shapes are not supported")
|
|
|
|
x_coords = shape.points[0::2]
|
|
y_coords = shape.points[1::2]
|
|
|
|
boxes.append((min(x_coords), min(y_coords), max(x_coords), max(y_coords)))
|
|
labels.append(target.label_id_to_index[shape.label_id])
|
|
|
|
return LabeledBoxes(
|
|
boxes=torch.tensor(boxes, dtype=torch.float),
|
|
labels=torch.tensor(labels, dtype=torch.long),
|
|
)
|