You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

254 lines
9.1 KiB
Python

# Copyright (C) 2022-2023 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import collections
import json
import os
import shutil
import types
import zipfile
from concurrent.futures import ThreadPoolExecutor
from typing import Callable, Dict, Mapping, Optional, Type, TypeVar
import PIL.Image
import torchvision.datasets
import cvat_sdk.core
import cvat_sdk.core.exceptions
import cvat_sdk.models as models
from cvat_sdk.api_client.model_utils import to_json
from cvat_sdk.core.utils import atomic_writer
from cvat_sdk.pytorch.common import (
FrameAnnotations,
Target,
UnsupportedDatasetError,
get_server_cache_dir,
)
_ModelType = TypeVar("_ModelType")
_NUM_DOWNLOAD_THREADS = 4
class TaskVisionDataset(torchvision.datasets.VisionDataset):
"""
Represents a task on a CVAT server as a PyTorch Dataset.
This dataset contains one sample for each frame in the task, in the same
order as the frames are in the task. Deleted frames are omitted.
Before transforms are applied, each sample is a tuple of
(image, target), where:
* image is a `PIL.Image.Image` object for the corresponding frame.
* target is a `Target` object containing annotations for the frame.
This class caches all data and annotations for the task on the local file system
during construction. If the task is updated on the server, the cache is updated.
Limitations:
* Only tasks with image (not video) data are supported at the moment.
* Track annotations are currently not accessible.
"""
def __init__(
self,
client: cvat_sdk.core.Client,
task_id: int,
*,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
label_name_to_index: Mapping[str, int] = None,
) -> None:
"""
Creates a dataset corresponding to the task with ID `task_id` on the
server that `client` is connected to.
`transforms`, `transform` and `target_transforms` are optional transformation
functions; see the documentation for `torchvision.datasets.VisionDataset` for
more information.
`label_name_to_index` affects the `label_id_to_index` member in `Target` objects
returned by the dataset. If it is specified, then it must contain an entry for
each label name in the task. The `label_id_to_index` mapping will be constructed
so that each label will be mapped to the index corresponding to the label's name
in `label_name_to_index`.
If `label_name_to_index` is unspecified or set to `None`, then `label_id_to_index`
will map each label ID to a distinct integer in the range [0, `num_labels`), where
`num_labels` is the number of labels defined in the task. This mapping will be
generally unpredictable, but consistent for a given task.
"""
self._logger = client.logger
self._logger.info(f"Fetching task {task_id}...")
self._task = client.tasks.retrieve(task_id)
if not self._task.size or not self._task.data_chunk_size:
raise UnsupportedDatasetError("The task has no data")
if self._task.data_original_chunk_type != "imageset":
raise UnsupportedDatasetError(
f"{self.__class__.__name__} only supports tasks with image chunks;"
f" current chunk type is {self._task.data_original_chunk_type!r}"
)
self._task_dir = get_server_cache_dir(client) / f"tasks/{self._task.id}"
self._initialize_task_dir()
super().__init__(
os.fspath(self._task_dir),
transforms=transforms,
transform=transform,
target_transform=target_transform,
)
data_meta = self._ensure_model(
"data_meta.json", models.DataMetaRead, self._task.get_meta, "data metadata"
)
self._active_frame_indexes = sorted(
set(range(self._task.size)) - set(data_meta.deleted_frames)
)
self._logger.info("Downloading chunks...")
self._chunk_dir = self._task_dir / "chunks"
self._chunk_dir.mkdir(exist_ok=True, parents=True)
needed_chunks = {
index // self._task.data_chunk_size for index in self._active_frame_indexes
}
with ThreadPoolExecutor(_NUM_DOWNLOAD_THREADS) as pool:
for _ in pool.map(self._ensure_chunk, sorted(needed_chunks)):
# just need to loop through all results so that any exceptions are propagated
pass
self._logger.info("All chunks downloaded")
if label_name_to_index is None:
self._label_id_to_index = types.MappingProxyType(
{
label.id: label_index
for label_index, label in enumerate(
sorted(self._task.labels, key=lambda l: l.id)
)
}
)
else:
self._label_id_to_index = types.MappingProxyType(
{label.id: label_name_to_index[label.name] for label in self._task.labels}
)
annotations = self._ensure_model(
"annotations.json", models.LabeledData, self._task.get_annotations, "annotations"
)
self._frame_annotations: Dict[int, FrameAnnotations] = collections.defaultdict(
FrameAnnotations
)
for tag in annotations.tags:
self._frame_annotations[tag.frame].tags.append(tag)
for shape in annotations.shapes:
self._frame_annotations[shape.frame].shapes.append(shape)
# TODO: tracks?
def _initialize_task_dir(self) -> None:
task_json_path = self._task_dir / "task.json"
try:
with open(task_json_path, "rb") as task_json_file:
saved_task = models.TaskRead._new_from_openapi_data(**json.load(task_json_file))
except Exception:
self._logger.info("Task is not yet cached or the cache is corrupted")
# If the cache was corrupted, the directory might already be there; clear it.
if self._task_dir.exists():
shutil.rmtree(self._task_dir)
else:
if saved_task.updated_date < self._task.updated_date:
self._logger.info(
"Task has been updated on the server since it was cached; purging the cache"
)
shutil.rmtree(self._task_dir)
self._task_dir.mkdir(exist_ok=True, parents=True)
with atomic_writer(task_json_path, "w", encoding="UTF-8") as task_json_file:
json.dump(to_json(self._task._model), task_json_file, indent=4)
print(file=task_json_file) # add final newline
def _ensure_chunk(self, chunk_index: int) -> None:
chunk_path = self._chunk_dir / f"{chunk_index}.zip"
if chunk_path.exists():
return # already downloaded previously
self._logger.info(f"Downloading chunk #{chunk_index}...")
with atomic_writer(chunk_path, "wb") as chunk_file:
self._task.download_chunk(chunk_index, chunk_file, quality="original")
def _ensure_model(
self,
filename: str,
model_type: Type[_ModelType],
download: Callable[[], _ModelType],
model_description: str,
) -> _ModelType:
path = self._task_dir / filename
try:
with open(path, "rb") as f:
model = model_type._new_from_openapi_data(**json.load(f))
self._logger.info(f"Loaded {model_description} from cache")
return model
except FileNotFoundError:
pass
except Exception:
self._logger.warning(f"Failed to load {model_description} from cache", exc_info=True)
self._logger.info(f"Downloading {model_description}...")
model = download()
self._logger.info(f"Downloaded {model_description}")
with atomic_writer(path, "w", encoding="UTF-8") as f:
json.dump(to_json(model), f, indent=4)
print(file=f) # add final newline
return model
def __getitem__(self, sample_index: int):
"""
Returns the sample with index `sample_index`.
`sample_index` must satisfy the condition `0 <= sample_index < len(self)`.
"""
frame_index = self._active_frame_indexes[sample_index]
chunk_index = frame_index // self._task.data_chunk_size
member_index = frame_index % self._task.data_chunk_size
with zipfile.ZipFile(self._chunk_dir / f"{chunk_index}.zip", "r") as chunk_zip:
with chunk_zip.open(chunk_zip.infolist()[member_index]) as chunk_member:
sample_image = PIL.Image.open(chunk_member)
sample_image.load()
sample_target = Target(
annotations=self._frame_annotations[frame_index],
label_id_to_index=self._label_id_to_index,
)
if self.transforms:
sample_image, sample_target = self.transforms(sample_image, sample_target)
return sample_image, sample_target
def __len__(self) -> int:
"""Returns the number of samples in the dataset."""
return len(self._active_frame_indexes)