You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

482 lines
17 KiB
Python

# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
from enum import Enum
import logging as log
import os.path as osp
import random
import pycocotools.mask as mask_utils
from datumaro.components.extractor import (Transform, AnnotationType,
RleMask, Polygon, Bbox,
LabelCategories, MaskCategories, PointsCategories
)
from datumaro.components.cli_plugin import CliPlugin
import datumaro.util.mask_tools as mask_tools
from datumaro.util.annotation_tools import find_group_leader, find_instances
class CropCoveredSegments(Transform, CliPlugin):
def transform_item(self, item):
annotations = []
segments = []
for ann in item.annotations:
if ann.type in {AnnotationType.polygon, AnnotationType.mask}:
segments.append(ann)
else:
annotations.append(ann)
if not segments:
return item
if not item.has_image:
raise Exception("Image info is required for this transform")
h, w = item.image.size
segments = self.crop_segments(segments, w, h)
annotations += segments
return self.wrap_item(item, annotations=annotations)
@classmethod
def crop_segments(cls, segment_anns, img_width, img_height):
segment_anns = sorted(segment_anns, key=lambda x: x.z_order)
segments = []
for s in segment_anns:
if s.type == AnnotationType.polygon:
segments.append(s.points)
elif s.type == AnnotationType.mask:
if isinstance(s, RleMask):
rle = s.rle
else:
rle = mask_tools.mask_to_rle(s.image)
segments.append(rle)
segments = mask_tools.crop_covered_segments(
segments, img_width, img_height)
new_anns = []
for ann, new_segment in zip(segment_anns, segments):
fields = {'z_order': ann.z_order, 'label': ann.label,
'id': ann.id, 'group': ann.group, 'attributes': ann.attributes
}
if ann.type == AnnotationType.polygon:
if fields['group'] is None:
fields['group'] = cls._make_group_id(
segment_anns + new_anns, fields['id'])
for polygon in new_segment:
new_anns.append(Polygon(points=polygon, **fields))
else:
rle = mask_tools.mask_to_rle(new_segment)
rle = mask_utils.frPyObjects(rle, *rle['size'])
new_anns.append(RleMask(rle=rle, **fields))
return new_anns
@staticmethod
def _make_group_id(anns, ann_id):
if ann_id:
return ann_id
max_gid = max(anns, default=0, key=lambda x: x.group)
return max_gid + 1
class MergeInstanceSegments(Transform, CliPlugin):
"""
Replaces instance masks and, optionally, polygons with a single mask.
"""
@classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument('--include-polygons', action='store_true',
help="Include polygons")
return parser
def __init__(self, extractor, include_polygons=False):
super().__init__(extractor)
self._include_polygons = include_polygons
def transform_item(self, item):
annotations = []
segments = []
for ann in item.annotations:
if ann.type in {AnnotationType.polygon, AnnotationType.mask}:
segments.append(ann)
else:
annotations.append(ann)
if not segments:
return item
if not item.has_image:
raise Exception("Image info is required for this transform")
h, w = item.image.size
instances = self.find_instances(segments)
segments = [self.merge_segments(i, w, h, self._include_polygons)
for i in instances]
segments = sum(segments, [])
annotations += segments
return self.wrap_item(item, annotations=annotations)
@classmethod
def merge_segments(cls, instance, img_width, img_height,
include_polygons=False):
polygons = [a for a in instance if a.type == AnnotationType.polygon]
masks = [a for a in instance if a.type == AnnotationType.mask]
if not polygons and not masks:
return []
leader = find_group_leader(polygons + masks)
instance = []
# Build the resulting mask
mask = None
if include_polygons and polygons:
polygons = [p.points for p in polygons]
mask = mask_tools.rles_to_mask(polygons, img_width, img_height)
else:
instance += polygons # keep unused polygons
if masks:
masks = [m.image for m in masks]
if mask is not None:
masks += [mask]
mask = mask_tools.merge_masks(masks)
if mask is None:
return instance
mask = mask_tools.mask_to_rle(mask)
mask = mask_utils.frPyObjects(mask, *mask['size'])
instance.append(
RleMask(rle=mask, label=leader.label, z_order=leader.z_order,
id=leader.id, attributes=leader.attributes, group=leader.group
)
)
return instance
@staticmethod
def find_instances(annotations):
return find_instances(a for a in annotations
if a.type in {AnnotationType.polygon, AnnotationType.mask})
class PolygonsToMasks(Transform, CliPlugin):
def transform_item(self, item):
annotations = []
for ann in item.annotations:
if ann.type == AnnotationType.polygon:
if not item.has_image:
raise Exception("Image info is required for this transform")
h, w = item.image.size
annotations.append(self.convert_polygon(ann, h, w))
else:
annotations.append(ann)
return self.wrap_item(item, annotations=annotations)
@staticmethod
def convert_polygon(polygon, img_h, img_w):
rle = mask_utils.frPyObjects([polygon.points], img_h, img_w)[0]
return RleMask(rle=rle, label=polygon.label, z_order=polygon.z_order,
id=polygon.id, attributes=polygon.attributes, group=polygon.group)
class BoxesToMasks(Transform, CliPlugin):
def transform_item(self, item):
annotations = []
for ann in item.annotations:
if ann.type == AnnotationType.bbox:
if not item.has_image:
raise Exception("Image info is required for this transform")
h, w = item.image.size
annotations.append(self.convert_bbox(ann, h, w))
else:
annotations.append(ann)
return self.wrap_item(item, annotations=annotations)
@staticmethod
def convert_bbox(bbox, img_h, img_w):
rle = mask_utils.frPyObjects([bbox.as_polygon()], img_h, img_w)[0]
return RleMask(rle=rle, label=bbox.label, z_order=bbox.z_order,
id=bbox.id, attributes=bbox.attributes, group=bbox.group)
class MasksToPolygons(Transform, CliPlugin):
def transform_item(self, item):
annotations = []
for ann in item.annotations:
if ann.type == AnnotationType.mask:
polygons = self.convert_mask(ann)
if not polygons:
log.debug("[%s]: item %s: "
"Mask conversion to polygons resulted in too "
"small polygons, which were discarded" % \
(self._get_name(__class__), item.id))
annotations.extend(polygons)
else:
annotations.append(ann)
return self.wrap_item(item, annotations=annotations)
@staticmethod
def convert_mask(mask):
polygons = mask_tools.mask_to_polygons(mask.image)
return [
Polygon(points=p, label=mask.label, z_order=mask.z_order,
id=mask.id, attributes=mask.attributes, group=mask.group)
for p in polygons
]
class ShapesToBoxes(Transform, CliPlugin):
def transform_item(self, item):
annotations = []
for ann in item.annotations:
if ann.type in { AnnotationType.mask, AnnotationType.polygon,
AnnotationType.polyline, AnnotationType.points,
}:
annotations.append(self.convert_shape(ann))
else:
annotations.append(ann)
return self.wrap_item(item, annotations=annotations)
@staticmethod
def convert_shape(shape):
bbox = shape.get_bbox()
return Bbox(*bbox, label=shape.label, z_order=shape.z_order,
id=shape.id, attributes=shape.attributes, group=shape.group)
class Reindex(Transform, CliPlugin):
@classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument('-s', '--start', type=int, default=1,
help="Start value for item ids")
return parser
def __init__(self, extractor, start=1):
super().__init__(extractor)
self._start = start
def __iter__(self):
for i, item in enumerate(self._extractor):
yield self.wrap_item(item, id=i + self._start)
class MapSubsets(Transform, CliPlugin):
@staticmethod
def _mapping_arg(s):
parts = s.split(':')
if len(parts) != 2:
import argparse
raise argparse.ArgumentTypeError()
return parts
@classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument('-s', '--subset', action='append',
type=cls._mapping_arg, dest='mapping',
help="Subset mapping of the form: 'src:dst' (repeatable)")
return parser
def __init__(self, extractor, mapping=None):
super().__init__(extractor)
if mapping is None:
mapping = {}
elif not isinstance(mapping, dict):
mapping = dict(tuple(m) for m in mapping)
self._mapping = mapping
def transform_item(self, item):
return self.wrap_item(item,
subset=self._mapping.get(item.subset, item.subset))
class RandomSplit(Transform, CliPlugin):
"""
Joins all subsets into one and splits the result into few parts.
It is expected that item ids are unique and subset ratios sum up to 1.|n
|n
Example:|n
|s|s%(prog)s --subset train:.67 --subset test:.33
"""
@staticmethod
def _split_arg(s):
parts = s.split(':')
if len(parts) != 2:
import argparse
raise argparse.ArgumentTypeError()
return (parts[0], float(parts[1]))
@classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument('-s', '--subset', action='append',
type=cls._split_arg, dest='splits',
help="Subsets in the form of: '<subset>:<ratio>' (repeatable)")
parser.add_argument('--seed', type=int, help="Random seed")
return parser
def __init__(self, extractor, splits, seed=None):
super().__init__(extractor)
assert 0 < len(splits), "Expected at least one split"
assert all(0.0 <= r and r <= 1.0 for _, r in splits), \
"Ratios are expected to be in the range [0; 1], but got %s" % splits
total_ratio = sum(s[1] for s in splits)
if not abs(total_ratio - 1.0) <= 1e-7:
raise Exception(
"Sum of ratios is expected to be 1, got %s, which is %s" %
(splits, total_ratio))
dataset_size = len(extractor)
indices = list(range(dataset_size))
random.seed(seed)
random.shuffle(indices)
parts = []
s = 0
for subset, ratio in splits:
s += ratio
boundary = int(s * dataset_size)
parts.append((boundary, subset))
self._parts = parts
def _find_split(self, index):
for boundary, subset in self._parts:
if index < boundary:
return subset
return subset # all the possible remainder goes to the last split
def __iter__(self):
for i, item in enumerate(self._extractor):
yield self.wrap_item(item, subset=self._find_split(i))
class IdFromImageName(Transform, CliPlugin):
def transform_item(self, item):
name = item.id
if item.has_image and item.image.filename:
name = osp.splitext(item.image.filename)[0]
return self.wrap_item(item, id=name)
class RemapLabels(Transform, CliPlugin):
DefaultAction = Enum('DefaultAction', ['keep', 'delete'])
@staticmethod
def _split_arg(s):
parts = s.split(':')
if len(parts) != 2:
import argparse
raise argparse.ArgumentTypeError()
return (parts[0], parts[1])
@classmethod
def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument('-l', '--label', action='append',
type=cls._split_arg, dest='mapping',
help="Label in the form of: '<src>:<dst>' (repeatable)")
parser.add_argument('--default',
choices=[a.name for a in cls.DefaultAction],
default=cls.DefaultAction.keep.name,
help="Action for unspecified labels")
return parser
def __init__(self, extractor, mapping, default=None):
super().__init__(extractor)
assert isinstance(default, (str, self.DefaultAction))
if isinstance(default, str):
default = self.DefaultAction[default]
assert isinstance(mapping, (dict, list))
if isinstance(mapping, list):
mapping = dict(mapping)
self._categories = {}
src_label_cat = self._extractor.categories().get(AnnotationType.label)
if src_label_cat is not None:
self._make_label_id_map(src_label_cat, mapping, default)
src_mask_cat = self._extractor.categories().get(AnnotationType.mask)
if src_mask_cat is not None:
assert src_label_cat is not None
dst_mask_cat = MaskCategories(attributes=src_mask_cat.attributes)
dst_mask_cat.colormap = {
id: src_mask_cat.colormap[id]
for id, _ in enumerate(src_label_cat.items)
if self._map_id(id) or id == 0
}
self._categories[AnnotationType.mask] = dst_mask_cat
src_points_cat = self._extractor.categories().get(AnnotationType.points)
if src_points_cat is not None:
assert src_label_cat is not None
dst_points_cat = PointsCategories(attributes=src_points_cat.attributes)
dst_points_cat.items = {
id: src_points_cat.items[id]
for id, item in enumerate(src_label_cat.items)
if self._map_id(id) or id == 0
}
self._categories[AnnotationType.points] = dst_points_cat
def _make_label_id_map(self, src_label_cat, label_mapping, default_action):
dst_label_cat = LabelCategories(attributes=src_label_cat.attributes)
id_mapping = {}
for src_index, src_label in enumerate(src_label_cat.items):
dst_label = label_mapping.get(src_label.name)
if not dst_label and default_action == self.DefaultAction.keep:
dst_label = src_label.name # keep unspecified as is
if not dst_label:
continue
dst_index = dst_label_cat.find(dst_label)[0]
if dst_index is None:
dst_index = dst_label_cat.add(dst_label,
src_label.parent, src_label.attributes)
id_mapping[src_index] = dst_index
if log.getLogger().isEnabledFor(log.DEBUG):
log.debug("Label mapping:")
for src_id, src_label in enumerate(src_label_cat.items):
if id_mapping.get(src_id):
log.debug("#%s '%s' -> #%s '%s'",
src_id, src_label.name, id_mapping[src_id],
dst_label_cat.items[id_mapping[src_id]].name
)
else:
log.debug("#%s '%s' -> <deleted>", src_id, src_label.name)
self._map_id = lambda src_id: id_mapping.get(src_id, None)
self._categories[AnnotationType.label] = dst_label_cat
def categories(self):
return self._categories
def transform_item(self, item):
# TODO: provide non-inplace version
annotations = []
for ann in item.annotations:
if ann.type in { AnnotationType.label, AnnotationType.mask,
AnnotationType.points, AnnotationType.polygon,
AnnotationType.polyline, AnnotationType.bbox
} and ann.label is not None:
conv_label = self._map_id(ann.label)
if conv_label is not None:
ann._label = conv_label
annotations.append(ann)
else:
annotations.append(ann)
item._annotations = annotations
return item