You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

84 lines
3.2 KiB
Python

# Copyright (C) 2019 Intel Corporation
#
# SPDX-License-Identifier: MIT
from tempfile import TemporaryDirectory
from pyunpack import Archive
import datumaro.components.extractor as datumaro
from cvat.apps.dataset_manager.bindings import CvatTaskDataExtractor
from cvat.apps.dataset_manager.util import make_zip_archive
from datumaro.components.project import Dataset
from .registry import dm_env, exporter, importer
@exporter(name='MOT', ext='ZIP', version='1.1')
def _export(dst_file, task_data, save_images=False):
extractor = CvatTaskDataExtractor(task_data, include_images=save_images)
extractor = Dataset.from_extractors(extractor) # apply lazy transforms
with TemporaryDirectory() as temp_dir:
converter = dm_env.make_converter('mot_seq_gt',
save_images=save_images)
converter(extractor, save_dir=temp_dir)
make_zip_archive(temp_dir, dst_file)
@importer(name='MOT', ext='ZIP', version='1.1')
def _import(src_file, task_data):
with TemporaryDirectory() as tmp_dir:
Archive(src_file.name).extractall(tmp_dir)
dataset = dm_env.make_importer('mot_seq')(tmp_dir).make_dataset()
tracks = {}
label_cat = dataset.categories()[datumaro.AnnotationType.label]
for item in dataset:
frame_number = int(item.id) - 1 # NOTE: MOT frames start from 1
frame_number = task_data.abs_frame_id(frame_number)
for ann in item.annotations:
if ann.type != datumaro.AnnotationType.bbox:
continue
track_id = ann.attributes.get('track_id')
if track_id is None:
# Extension. Import regular boxes:
task_data.add_shape(task_data.LabeledShape(
type='rectangle',
label=label_cat.items[ann.label].name,
points=ann.points,
occluded=ann.attributes.get('occluded') == True,
z_order=ann.z_order,
group=0,
frame=frame_number,
attributes=[],
))
continue
shape = task_data.TrackedShape(
type='rectangle',
points=ann.points,
occluded=ann.attributes.get('occluded') == True,
outside=False,
keyframe=False,
z_order=ann.z_order,
frame=frame_number,
attributes=[],
)
# build trajectories as lists of shapes in track dict
if track_id not in tracks:
tracks[track_id] = task_data.Track(
label_cat.items[ann.label].name, 0, [])
tracks[track_id].shapes.append(shape)
for track in tracks.values():
# MOT annotations do not require frames to be ordered
track.shapes.sort(key=lambda t: t.frame)
# Set outside=True for the last shape in a track to finish the track
track.shapes[-1] = track.shapes[-1]._replace(outside=True)
task_data.add_track(track)