You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

244 lines
10 KiB
Python

import numpy as np
import os
import os.path as osp
from xml.etree import ElementTree as ET
from unittest import TestCase
from datumaro.components.extractor import (Extractor, DatasetItem,
AnnotationType, Points, Polygon, PolyLine, Bbox,
LabelCategories,
)
from datumaro.plugins.cvat_format.importer import CvatImporter
from datumaro.plugins.cvat_format.converter import CvatConverter
from datumaro.plugins.cvat_format.format import CvatPath
from datumaro.util.image import save_image
from datumaro.util.test_utils import TestDir, compare_datasets
class CvatExtractorTest(TestCase):
@staticmethod
def generate_dummy_cvat(path):
images_dir = osp.join(path, CvatPath.IMAGES_DIR)
anno_dir = osp.join(path, CvatPath.ANNOTATIONS_DIR)
os.makedirs(images_dir)
os.makedirs(anno_dir)
root_elem = ET.Element('annotations')
ET.SubElement(root_elem, 'version').text = '1.1'
meta_elem = ET.SubElement(root_elem, 'meta')
task_elem = ET.SubElement(meta_elem, 'task')
ET.SubElement(task_elem, 'z_order').text = 'True'
ET.SubElement(task_elem, 'mode').text = 'interpolation'
labels_elem = ET.SubElement(task_elem, 'labels')
label1_elem = ET.SubElement(labels_elem, 'label')
ET.SubElement(label1_elem, 'name').text = 'label1'
label1_attrs_elem = ET.SubElement(label1_elem, 'attributes')
label1_a1_elem = ET.SubElement(label1_attrs_elem, 'attribute')
ET.SubElement(label1_a1_elem, 'name').text = 'a1'
ET.SubElement(label1_a1_elem, 'input_type').text = 'checkbox'
ET.SubElement(label1_a1_elem, 'default_value').text = 'false'
ET.SubElement(label1_a1_elem, 'values').text = 'false\ntrue'
label1_a2_elem = ET.SubElement(label1_attrs_elem, 'attribute')
ET.SubElement(label1_a2_elem, 'name').text = 'a2'
ET.SubElement(label1_a2_elem, 'input_type').text = 'radio'
ET.SubElement(label1_a2_elem, 'default_value').text = 'v1'
ET.SubElement(label1_a2_elem, 'values').text = 'v1\nv2\nv3'
label2_elem = ET.SubElement(labels_elem, 'label')
ET.SubElement(label2_elem, 'name').text = 'label2'
# item 1
save_image(osp.join(images_dir, 'img0.jpg'), np.ones((8, 8, 3)))
item1_elem = ET.SubElement(root_elem, 'image')
item1_elem.attrib.update({
'id': '0', 'name': 'img0', 'width': '8', 'height': '8'
})
item1_ann1_elem = ET.SubElement(item1_elem, 'box')
item1_ann1_elem.attrib.update({
'label': 'label1', 'occluded': '1', 'z_order': '1',
'xtl': '0', 'ytl': '2', 'xbr': '4', 'ybr': '4'
})
item1_ann1_a1_elem = ET.SubElement(item1_ann1_elem, 'attribute')
item1_ann1_a1_elem.attrib['name'] = 'a1'
item1_ann1_a1_elem.text = 'true'
item1_ann1_a2_elem = ET.SubElement(item1_ann1_elem, 'attribute')
item1_ann1_a2_elem.attrib['name'] = 'a2'
item1_ann1_a2_elem.text = 'v3'
item1_ann2_elem = ET.SubElement(item1_elem, 'polyline')
item1_ann2_elem.attrib.update({
'label': '', 'points': '1.0,2;3,4;5,6;7,8'
})
# item 2
save_image(osp.join(images_dir, 'img1.jpg'), np.ones((10, 10, 3)))
item2_elem = ET.SubElement(root_elem, 'image')
item2_elem.attrib.update({
'id': '1', 'name': 'img1', 'width': '8', 'height': '8'
})
item2_ann1_elem = ET.SubElement(item2_elem, 'polygon')
item2_ann1_elem.attrib.update({
'label': '', 'points': '1,2;3,4;6,5', 'z_order': '1',
})
item2_ann2_elem = ET.SubElement(item2_elem, 'points')
item2_ann2_elem.attrib.update({
'label': 'label2', 'points': '1,2;3,4;5,6', 'z_order': '2',
})
with open(osp.join(anno_dir, 'train.xml'), 'w') as f:
f.write(ET.tostring(root_elem, encoding='unicode'))
def test_can_load(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=0, subset='train', image=np.ones((8, 8, 3)),
annotations=[
Bbox(0, 2, 4, 2, label=0,
attributes={
'occluded': True, 'z_order': 1,
'a1': True, 'a2': 'v3'
}),
PolyLine([1, 2, 3, 4, 5, 6, 7, 8],
attributes={'occluded': False, 'z_order': 0}),
]),
DatasetItem(id=1, subset='train', image=np.ones((10, 10, 3)),
annotations=[
Polygon([1, 2, 3, 4, 6, 5],
attributes={'occluded': False, 'z_order': 1}),
Points([1, 2, 3, 4, 5, 6], label=1,
attributes={'occluded': False, 'z_order': 2}),
]),
])
def categories(self):
label_categories = LabelCategories()
label_categories.add('label1', attributes={'a1', 'a2'})
label_categories.add('label2')
return {
AnnotationType.label: label_categories,
}
with TestDir() as test_dir:
self.generate_dummy_cvat(test_dir)
source_dataset = TestExtractor()
parsed_dataset = CvatImporter()(test_dir).make_dataset()
compare_datasets(self, source_dataset, parsed_dataset)
class CvatConverterTest(TestCase):
def _test_save_and_load(self, source_dataset, converter, test_dir,
target_dataset=None, importer_args=None):
converter(source_dataset, test_dir)
if importer_args is None:
importer_args = {}
parsed_dataset = CvatImporter()(test_dir, **importer_args).make_dataset()
if target_dataset is None:
target_dataset = source_dataset
compare_datasets(self, expected=target_dataset, actual=parsed_dataset)
def test_can_save_and_load(self):
label_categories = LabelCategories()
for i in range(10):
label_categories.add(str(i))
label_categories.items[2].attributes.update(['a1', 'a2'])
label_categories.attributes.update(['z_order', 'occluded'])
class SrcTestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=0, subset='s1', image=np.zeros((5, 10, 3)),
annotations=[
Polygon([0, 0, 4, 0, 4, 4],
label=1, group=4,
attributes={ 'occluded': True }),
Polygon([5, 0, 9, 0, 5, 5],
label=2, group=4,
attributes={ 'unknown': 'bar' }),
Points([1, 1, 3, 2, 2, 3],
label=2,
attributes={ 'a1': 'x', 'a2': 42 }),
]
),
DatasetItem(id=1, subset='s1',
annotations=[
PolyLine([0, 0, 4, 0, 4, 4],
label=3, id=4, group=4),
Bbox(5, 0, 1, 9,
label=3, id=4, group=4),
]
),
DatasetItem(id=2, subset='s2', image=np.ones((5, 10, 3)),
annotations=[
Polygon([0, 0, 4, 0, 4, 4],
label=3, group=4,
attributes={ 'z_order': 1, 'occluded': False }),
PolyLine([5, 0, 9, 0, 5, 5]), # will be skipped as no label
]
),
])
def categories(self):
return { AnnotationType.label: label_categories }
class DstTestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=0, subset='s1', image=np.zeros((5, 10, 3)),
annotations=[
Polygon([0, 0, 4, 0, 4, 4],
label=1, group=4,
attributes={ 'z_order': 0, 'occluded': True }),
Polygon([5, 0, 9, 0, 5, 5],
label=2, group=4,
attributes={ 'z_order': 0, 'occluded': False }),
Points([1, 1, 3, 2, 2, 3],
label=2,
attributes={ 'z_order': 0, 'occluded': False,
'a1': 'x', 'a2': 42 }),
]
),
DatasetItem(id=1, subset='s1',
annotations=[
PolyLine([0, 0, 4, 0, 4, 4],
label=3, group=4,
attributes={ 'z_order': 0, 'occluded': False }),
Bbox(5, 0, 1, 9,
label=3, group=4,
attributes={ 'z_order': 0, 'occluded': False }),
]
),
DatasetItem(id=2, subset='s2', image=np.ones((5, 10, 3)),
annotations=[
Polygon([0, 0, 4, 0, 4, 4],
label=3, group=4,
attributes={ 'z_order': 1, 'occluded': False }),
]
),
])
def categories(self):
return { AnnotationType.label: label_categories }
with TestDir() as test_dir:
self._test_save_and_load(SrcTestExtractor(),
CvatConverter(save_images=True), test_dir,
target_dataset=DstTestExtractor())