You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

129 lines
4.1 KiB
Python

import numpy as np
from unittest import TestCase
from datumaro.components.extractor import (Extractor, DatasetItem,
AnnotationType, Bbox, LabelCategories
)
from datumaro.plugins.tf_detection_api_format.importer import TfDetectionApiImporter
from datumaro.plugins.tf_detection_api_format.extractor import TfDetectionApiExtractor
from datumaro.plugins.tf_detection_api_format.converter import TfDetectionApiConverter
from datumaro.util.test_utils import TestDir, compare_datasets
class TfrecordConverterTest(TestCase):
def _test_save_and_load(self, source_dataset, converter, test_dir,
target_dataset=None, importer_args=None):
converter(source_dataset, test_dir)
if importer_args is None:
importer_args = {}
parsed_dataset = TfDetectionApiImporter()(test_dir, **importer_args) \
.make_dataset()
if target_dataset is None:
target_dataset = source_dataset
compare_datasets(self, expected=target_dataset, actual=parsed_dataset)
def test_can_save_bboxes(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1, subset='train',
image=np.ones((16, 16, 3)),
annotations=[
Bbox(0, 4, 4, 8, label=2, id=0),
Bbox(0, 4, 4, 4, label=3, id=1),
Bbox(2, 4, 4, 4, id=2),
]
),
DatasetItem(id=2, subset='val',
image=np.ones((8, 8, 3)),
annotations=[
Bbox(1, 2, 4, 2, label=3, id=0),
]
),
DatasetItem(id=3, subset='test',
image=np.ones((5, 4, 3)) * 3,
),
])
def categories(self):
label_cat = LabelCategories()
for label in range(10):
label_cat.add('label_' + str(label))
return {
AnnotationType.label: label_cat,
}
with TestDir() as test_dir:
self._test_save_and_load(
TestExtractor(), TfDetectionApiConverter(save_images=True),
test_dir)
def test_can_save_dataset_with_no_subsets(self):
class TestExtractor(Extractor):
def __iter__(self):
return iter([
DatasetItem(id=1,
image=np.ones((16, 16, 3)),
annotations=[
Bbox(2, 1, 4, 4, label=2, id=0),
Bbox(4, 2, 8, 4, label=3, id=1),
]
),
DatasetItem(id=2,
image=np.ones((8, 8, 3)) * 2,
annotations=[
Bbox(4, 4, 4, 4, label=3, id=0),
]
),
DatasetItem(id=3,
image=np.ones((8, 4, 3)) * 3,
),
])
def categories(self):
label_cat = LabelCategories()
for label in range(10):
label_cat.add('label_' + str(label))
return {
AnnotationType.label: label_cat,
}
with TestDir() as test_dir:
self._test_save_and_load(
TestExtractor(), TfDetectionApiConverter(save_images=True),
test_dir)
def test_labelmap_parsing(self):
text = """
{
id: 4
name: 'qw1'
}
{
id: 5 name: 'qw2'
}
{
name: 'qw3'
id: 6
}
{name:'qw4' id:7}
"""
expected = {
'qw1': 4,
'qw2': 5,
'qw3': 6,
'qw4': 7,
}
parsed = TfDetectionApiExtractor._parse_labelmap(text)
self.assertEqual(expected, parsed)