You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
3.3 KiB
Python

# https://leimao.github.io/blog/ONNX-Python-API/
# https://github.com/saurabh-shandilya/onnx-utils
import io
import os
from platform import node
import onnx
class onnxModifier:
def __init__(self, model_name, model_proto):
self.model_name = model_name
self.model_proto = model_proto
self.graph = self.model_proto.graph
self.gen_node_name2module_map()
def gen_node_name2module_map(self):
self.node_name2module = dict()
node_idx = 0
for node in self.graph.input:
node_idx += 1
self.node_name2module[node.name] = node
for node in self.graph.node:
if node.name == '':
node.name = str(node.op_type) + str(node_idx)
node_idx += 1
self.node_name2module[node.name] = node
for node in self.graph.output:
node_idx += 1
self.node_name2module[node.name] = node
self.graph_output_names = [node.name for node in self.graph.output]
# print(self.node_name2module.keys())
@classmethod
def from_model_path(cls, model_path):
model_name = os.path.basename(model_path)
model_proto = onnx.load(model_path)
return cls(model_name, model_proto)
@classmethod
def from_name_stream(cls, name, stream):
# https://leimao.github.io/blog/ONNX-IO-Stream/
stream.seek(0)
model_proto = onnx.load_model(stream, onnx.ModelProto)
return cls(name, model_proto)
def remove_node_by_name(self, node_name):
self.graph.node.remove(self.node_name2module[node_name])
def remove_output_by_name(self, node_name):
self.graph.output.remove(self.node_name2module[node_name])
def remove_node_by_node_states(self, node_states):
for node_name, node_state in node_states.items():
if node_state == 'Deleted':
if node_name in self.graph_output_names:
self.remove_output_by_name(node_name)
else:
self.remove_node_by_name(node_name)
def check_and_save_model(self, save_dir='./res_onnx'):
save_path = os.path.join(save_dir, 'modified_' + self.model_name)
onnx.checker.check_model(self.model_proto)
onnx.save(self.model_proto, save_path)
def inference(self):
# model_proto_bytes = onnx._serialize(model_proto_from_stream)
# inference_session = rt.InferenceSession(model_proto_bytes)
pass
if __name__ == "__main__":
model_path = "C:\\Users\\ZhangGe\\Desktop\\squeezenet1.0-12-int8.onnx"
onnx_modifier = onnxModifier.from_model_path(model_path)
onnx_modifier.remove_node_by_name('Softmax_nc_rename_64')
onnx_modifier.remove_output_by_name('softmaxout_1')
# onnx_modifier.graph.output.remove(onnx_modifier.node_name2module['softmaxout_1'])
onnx_modifier.check_and_save_model()
# print(onnx_modifier.graph.input)
# print(onnx_modifier.graph.output)
# print(onnx_modifier.node_name2module['Softmax_nc_rename_64'])
# print(onnx_modifier.node_name2module['softmaxout_1'])
# onnx_modifier.remove_node_by_name('softmaxout_1')
# for node in onnx_modifier.graph.output:
# print(node.name)