You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

177 lines
7.0 KiB
Python

# https://leimao.github.io/blog/ONNX-Python-API/
# https://leimao.github.io/blog/ONNX-IO-Stream/
# https://github.com/saurabh-shandilya/onnx-utils
# https://stackoverflow.com/questions/52402448/how-to-read-individual-layers-weight-bias-values-from-onnx-model
import os
import copy
import onnx
class onnxModifier:
def __init__(self, model_name, model_proto):
self.model_name = model_name
self.model_proto_backup = model_proto
self.reload()
@classmethod
def from_model_path(cls, model_path):
model_name = os.path.basename(model_path)
model_proto = onnx.load(model_path)
return cls(model_name, model_proto)
@classmethod
def from_name_stream(cls, name, stream):
# https://leimao.github.io/blog/ONNX-IO-Stream/
stream.seek(0)
model_proto = onnx.load_model(stream, onnx.ModelProto, load_external_data=False)
return cls(name, model_proto)
def reload(self):
self.model_proto = copy.deepcopy(self.model_proto_backup)
self.graph = self.model_proto.graph
self.initializer = self.model_proto.graph.initializer
self.gen_name2module_map()
def gen_name2module_map(self):
# node name => node
self.node_name2module = dict()
node_idx = 0
for node in self.graph.node:
if node.name == '':
node.name = str(node.op_type) + str(node_idx)
node_idx += 1
self.node_name2module[node.name] = node
for out in self.graph.output:
self.node_name2module["out_" + out.name] = out # add `out_` in case the output has the same name with the last node
self.graph_output_names = ["out_" + out.name for out in self.graph.output]
# print(self.node_name2module.keys())
# initializer name => initializer
self.initilizer_name2module = dict()
for initializer in self.initializer:
self.initilizer_name2module[initializer.name] = initializer
def remove_node_by_name(self, node_name):
# remove node in graph
self.graph.node.remove(self.node_name2module[node_name])
def remove_output_by_name(self, node_name):
self.graph.output.remove(self.node_name2module[node_name])
def remove_node_by_node_states(self, node_states):
# remove node from graph
for node_name, node_state in node_states.items():
if node_state == 'Deleted':
if node_name in self.graph_output_names:
# print('removing output {} ...'.format(node_name))
self.remove_output_by_name(node_name)
else:
# print('removing node {} ...'.format(node_name))
self.remove_node_by_name(node_name)
# remove node initializers (parameters) aka, keep and only keep the initializers of left nodes
left_node_inputs = []
for left_node in self.graph.node:
left_node_inputs += left_node.input
for init_name in self.initilizer_name2module.keys():
if not init_name in left_node_inputs:
self.initializer.remove(self.initilizer_name2module[init_name])
def modify_node_io_name(self, node_renamed_io):
# print(node_renamed_io)
for node_name in node_renamed_io.keys():
renamed_ios = node_renamed_io[node_name]
for src_name, dst_name in renamed_ios.items():
# print(src_name, dst_name)
node = self.node_name2module[node_name]
# print(node.input, node.output)
for i in range(len(node.input)):
if node.input[i] == src_name:
node.input[i] = dst_name
for i in range(len(node.output)):
if node.output[i] == src_name:
node.output[i] = dst_name
# print(node.input, node.output)
def check_and_save_model(self, save_dir='./modified_onnx'):
if not os.path.exists(save_dir):
os.mkdir(save_dir)
save_path = os.path.join(save_dir, 'modified_' + self.model_name)
onnx.checker.check_model(self.model_proto)
onnx.save(self.model_proto, save_path)
def inference(self):
# model_proto_bytes = onnx._serialize(model_proto_from_stream)
# inference_session = rt.InferenceSession(model_proto_bytes)
pass
if __name__ == "__main__":
model_path = "C:\\Users\\ZhangGe\\Desktop\\squeezenet1.0-3.onnx"
# model_path = "C:\\Users\\ZhangGe\\Desktop\\squeezenet1.0-12-int8.onnx"
# model_path = "C:\\Users\\ZhangGe\\Desktop\\tflite_sim.onnx"
onnx_modifier = onnxModifier.from_model_path(model_path)
def remove_node_by_node_states():
print(len(onnx_modifier.graph.node))
print(len(onnx_modifier.graph.initializer))
node_states_fp = {}
node_states_quant = {}
node_states = node_states_quant
# node_states = node_states_fp
# print('\graph input')
# for inp in onnx_modifier.graph.input:
# print(inp.name)
onnx_modifier.remove_node_by_node_states(node_states)
print(len(onnx_modifier.graph.node))
print(len(onnx_modifier.graph.initializer))
print(len(onnx_modifier.initilizer_name2module.keys()))
# print(onnx_modifier.initilizer_name2module.keys())
# for i, k in enumerate(onnx_modifier.initilizer_name2module.keys()):
# print("\nremoving", i, k)
# onnx_modifier.graph.initializer.remove(onnx_modifier.initilizer_name2module[k])
# print("removed")
print('\nleft initializers:')
for initializer in onnx_modifier.model_proto.graph.initializer:
print(initializer.name)
print('\nleft nodes:')
for node in onnx_modifier.graph.node:
print(node.name)
print('\nleft input')
for inp in onnx_modifier.graph.input:
print(inp.name)
onnx_modifier.check_and_save_model()
# remove_node_by_node_states()
def explore_basic():
print(type(onnx_modifier.model_proto.graph.initializer))
print(dir(onnx_modifier.model_proto.graph.initializer))
print(len(onnx_modifier.model_proto.graph.node))
print(len(onnx_modifier.model_proto.graph.initializer))
for node in onnx_modifier.model_proto.graph.node:
print(node.name)
print(node.input)
print()
# for initializer in onnx_modifier.model_proto.graph.initializer:
# print(initializer.name)
# print(onnx_modifier.model_proto.graph.initializer['fire9/concat_1_scale'])
# explore_basic()
def test_modify_node_io_name():
node_rename_io = {'Conv3': {'pool1_1': 'conv1_1'}}
onnx_modifier.modify_node_io_name(node_rename_io)
onnx_modifier.check_and_save_model()
test_modify_node_io_name()