#---设备配置---# # device: cpu device: cuda #---训练配置---# n_epochs: 150 batch_size: 16 learning_rate: 0.001 nc: 4 #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练) data_train: train_val early_stop_patience: 50 gamma: 0.98 step_size: 10 experiments_count: 1 #---检测和推理配置---# # 检测和推理使用模型路径 model_path: model/psychology.pth #---样本特征---# # 标签名称 label_name: 类别 # 特征名称 feature_names: - "强迫症状数字化" - "人际关系敏感数字化" - "抑郁数字化" - "多因子症状" - "母亲教养方式数字化" - "父亲教养方式数字化" - "自评家庭经济条件数字化" - "有无心理治疗(咨询)史数字化" - "学业情况数字化" - "出勤情况数字化" # 定义特征权重列表 feature_weights: - 0.135 - 0.085 - 0.08 - 0.2 - 0.09 - 0.09 - 0.06 - 0.06 - 0.08 - 0.12 #---网络结构---# # MLP configuration mlp: input_dim: 10 # Number of input features layers: - output_dim: 32 activation: relu - output_dim: 128 activation: relu - output_dim: 32 activation: relu output_dim: 4 # Number of classes # Transformer configuration transformer: d_model: 32 # Reduced embedding dimension nhead: 4 # Reduced number of attention heads num_encoder_layers: 2 # Reduced number of encoder layers num_decoder_layers: 2 # Reduced number of decoder layers dim_feedforward: 128 # Reduced feedforward network dimension dropout: 0.1 # Dropout probability input_dim: 10 # Number of input features output_dim: 4 # Number of classes #---训练配置备份---# # MLP good train param 1 # #---训练配置---# # n_epochs: 150 # batch_size: 16 # learning_rate: 0.001 # nc: 4 # #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练) # data_train: train_val # early_stop_patience: 50 # gamma: 0.98 # step_size: 10 # experiments_count: 1 # MLP good train param 2 # #---训练配置---# # n_epochs: 300 # batch_size: 8 # learning_rate: 0.0005 # nc: 4 # #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练) # data_train: train_val # early_stop_patience: 50 # gamma: 0.98 # step_size: 10 # experiments_count: 1 # Transformer good train param 1 # #---训练配置---# # n_epochs: 150 # batch_size: 64 # learning_rate: 0.001 # nc: 4 # #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练) # data_train: train_val # early_stop_patience: 50 # gamma: 0.98 # step_size: 10 # experiments_count: 1 # Transformer good train param 2 # #---训练配置---# # n_epochs: 300 # batch_size: 8 # learning_rate: 0.0005 # nc: 4 # #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练) # data_train: train_val # early_stop_patience: 50 # gamma: 0.98 # step_size: 10 # experiments_count: 1