import os import sys root_path = os.getcwd() sys.path.append(root_path) import time import datetime import signal import uvicorn import pandas as pd from fastapi import FastAPI, Request from pydantic import BaseModel from typing import List from utils.common import inference_model from fastapi.middleware.cors import CORSMiddleware import logging import matplotlib.pyplot as plt import argparse import numpy as np import yaml import threading import pickle from fastapi.responses import FileResponse from fastapi.staticfiles import StaticFiles from utils.feature_process import create_feature_df, apply_feature_weights, Features app = FastAPI() # 定义fastapi返回类 class PredictionResult(BaseModel): predictions: list # 允许所有域名的跨域请求 app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"], allow_headers=["*"], ) # 定义接口 @app.post("/inference/") async def classify_features(request: Request, features_list: List[Features]): # 遍历每个特征对象,并将其添加到 all_features 中 all_features = create_feature_df(features_list) # 读取 YAML 配置文件 config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "config/config.yaml")) with open(config_path, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) feature_names = config['feature_names'] feature_weights = config['feature_weights'] # 应用特征权重 feature_label_weighted = apply_feature_weights(all_features, feature_names, feature_weights) start_time = time.time() # 记录开始时间 # 创建静态文件存放文件夹 static_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "inference_api")) # 设置模型文件和配置文件的存放目录,和本py同级 os.makedirs(static_dir, exist_ok=True) # 训练前设置 now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") data_path = os.path.abspath(os.path.join(os.path.dirname(__file__), static_dir, f"all_features_label_{now}.xlsx")) config['data_path'] = data_path feature_label_weighted.to_excel(data_path, index=False) # 配置日志 log_path = os.path.abspath(os.path.join(os.path.dirname(__file__), static_dir, f"inference_{now}.log")) logging.basicConfig(filename=log_path, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # 特征和标签 X = feature_label_weighted[config['feature_names']].values y = feature_label_weighted[config['label_name']].values predictions = inference_model(config["model_path"], X, y, config) end_time = time.time() # 记录结束时间 print("预测耗时:", end_time - start_time, "秒") # 打印执行时间 print("预测结果:", predictions) # 返回预测结果 return PredictionResult(predictions=predictions) # 以下是fastapi启动配置 if __name__ == "__main__": name_app = os.path.basename(__file__)[0:-3] # Get the name of the script log_config = { "version": 1, "disable_existing_loggers": True, "handlers": { "file_handler": { "class": "logging.FileHandler", "filename": "logfile.log", }, }, "root": { "handlers": ["file_handler"], "level": "INFO", }, } # 创建静态文件存放文件夹 static_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "inference_api")) # 设置模型文件和配置文件的存放目录,和本py同级 os.makedirs(static_dir, exist_ok=True) # train_api.py同级目录下的static文件夹 app.mount("/inference_api", StaticFiles(directory=static_dir), name="static") uvicorn.run(app, host="0.0.0.0", port=3397, reload=False)