You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

299 lines
11 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
import time
import datetime
import logging
import uvicorn
import yaml
import numpy as np
from fastapi import FastAPI, Request
from pydantic import BaseModel
from typing import List
import atexit
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from utils.feature_process import create_feature_df, apply_feature_weights, Features
from utils.common import MLModel
app = FastAPI()
# 控制是否打印的宏定义
PRINT_LOG = True
def log_print(message):
logging.info(message)
if PRINT_LOG:
print(message)
# 保证日志写到文件
def flush_log():
for handler in logging.getLogger().handlers:
handler.flush()
# 定义fastapi返回类 inference
class PredictionResult(BaseModel):
predictions: list
# 定义fastapi返回类
class ClassificationResult(BaseModel):
precision: list
recall: list
f1: list
wrong_percentage: float
# 允许所有域名的跨域请求
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"],
allow_headers=["*"],
)
# 初始化配置文件
config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "config/config.yaml"))
# 定义训练接口
@app.post("/train/")
async def train_model(request: Request, features_list: List[Features]):
# 遍历每个特征对象,并将其添加到 all_features 中
all_features = create_feature_df(features_list)
# 读取 YAML 配置文件
with open(config_path, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
feature_names = config['feature_names']
feature_weights = config['feature_weights']
# 应用特征权重
feature_label_weighted = apply_feature_weights(all_features, feature_names, feature_weights)
start_time = time.time() # 记录开始时间
# 创建静态文件存放文件夹
static_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "train_api")) # 设置模型文件和配置文件的存放目录和本py同级
os.makedirs(static_dir, exist_ok=True)
# 训练前设置
now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
data_path = os.path.abspath(os.path.join(static_dir, f"train_feature_label_weighted_{now}.xlsx"))
config['data_path'] = data_path
feature_label_weighted.to_excel(data_path, index=False)
# 添加模型保存路径
model_path = os.path.abspath(os.path.join(static_dir, f"train_model_{now}.pth"))
config['model_path'] = model_path
# 配置日志
log_path = os.path.abspath(os.path.join(static_dir, f"train_log_{now}.log"))
logging.basicConfig(filename=log_path, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# 配置训练和验证结果图片路径
train_process_path = os.path.abspath(os.path.join(static_dir, f"train_progress_img_{now}.png"))
config['train_process_path'] = train_process_path
evaluate_result_path = os.path.abspath(os.path.join(static_dir, f"evaluate_result_img_{now}.png"))
config['evaluate_result_path'] = evaluate_result_path
log_print("config: " + str(config))
# 开始训练
# 初始化 MLModel 实例
ml_model = MLModel(config)
list_avg_f1 = []
list_wrong_percentage = []
list_precision = []
list_recall = []
list_f1 = []
train_times = 1 if config['data_train'] == 'all' else config["experiments_count"]
for _ in range(train_times):
avg_f1, wrong_percentage, precision, recall, f1 = ml_model.train_detect()
list_avg_f1.append(avg_f1)
list_wrong_percentage.append(wrong_percentage)
list_precision.append(precision)
list_recall.append(recall)
list_f1.append(f1)
log_print(f"Result: Avg F1: {sum(list_avg_f1) / len(list_avg_f1):.4f} Avg Wrong Percentage: {sum(list_wrong_percentage) / len(list_wrong_percentage):.2f}%")
log_print(f"Result: Avg Precision: {[sum(p[i] for p in list_precision) / len(list_precision) for i in range(len(list_precision[0]))]} | {np.mean(list_precision)}")
log_print(f"Result: Avg Recall: {[sum(r[i] for r in list_recall) / len(list_recall) for i in range(len(list_recall[0]))]} | {np.mean(list_recall)}")
log_print(f"Result: Avg F1: {[sum(f1[i] for f1 in list_f1) / len(list_f1) for i in range(len(list_f1[0]))]} | {np.mean(list_f1)}")
end_time = time.time() # 记录结束时间
log_print("预测耗时: " + str(end_time - start_time) + "") # 打印执行时间
# 保证日志写到文件
atexit.register(flush_log)
# 返回分类结果和模型文件下载 URLstatic不是程序执行路径而是app.mount的静态文件夹
model_file_url = f"{request.base_url}train_api/train_model_{now}.pth"
log_file_url = f"{request.base_url}train_api/train_log_{now}.log"
data_file_url = f"{request.base_url}train_api/train_feature_label_weighted_{now}.xlsx"
# 返回分类结果和模型文件
return {
"classification_result": ClassificationResult(
precision=precision,
recall=recall,
f1=f1,
wrong_percentage=wrong_percentage
),
"data_file": {
"model_file_url": model_file_url,
"log_file_url": log_file_url,
"data_file_url": data_file_url
}
}
# 定义验证接口
@app.post("/evaluate/")
async def evaluate_model(request: Request, features_list: List[Features]):
# 遍历每个特征对象,并将其添加到 all_features 中
all_features = create_feature_df(features_list)
# 读取 YAML 配置文件
with open(config_path, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
feature_names = config['feature_names']
feature_weights = config['feature_weights']
# 应用特征权重
feature_label_weighted = apply_feature_weights(all_features, feature_names, feature_weights)
start_time = time.time() # 记录开始时间
# 创建静态文件存放文件夹
static_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "evaluate_api")) # 设置模型文件和配置文件的存放目录和本py同级
os.makedirs(static_dir, exist_ok=True)
# 训练前设置
now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
data_path = os.path.abspath(os.path.join(static_dir, f"evaluate_feature_label_weighted_{now}.xlsx"))
config['data_path'] = data_path
feature_label_weighted.to_excel(data_path, index=False)
# 配置验证结果图片路径
evaluate_result_path = os.path.abspath(os.path.join(static_dir, f"evaluate_result_img_{now}.png"))
config['evaluate_result_path'] = evaluate_result_path
# 配置日志
log_path = os.path.abspath(os.path.join(static_dir, f"evaluate_log_{now}.log"))
logging.basicConfig(filename=log_path, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# 特征和标签
X = feature_label_weighted[config['feature_names']].values
y = feature_label_weighted[config['label_name']].values
# 初始化 MLModel 实例
ml_model = MLModel(config)
# 加载模型
ml_model.load_model()
avg_f1, wrong_percentage, precision, recall, f1 = ml_model.evaluate_model(X, y)
end_time = time.time() # 记录结束时间
log_print("预测耗时: " + str(end_time - start_time) + "") # 打印执行时间
# 保证日志写到文件
atexit.register(flush_log)
# 返回分类结果和模型文件下载 URLstatic不是程序执行路径而是app.mount的静态文件夹
log_file_url = f"{request.base_url}evaluate_api/evaluate_log_{now}.log"
data_file_url = f"{request.base_url}evaluate_api/evaluate_feature_label_weighted_{now}.xlsx"
# 返回分类结果和模型文件
return {
"classification_result": ClassificationResult(
precision=precision,
recall=recall,
f1=f1,
wrong_percentage=wrong_percentage
),
"data_file": {
"log_file_url": log_file_url,
"data_file_url": data_file_url
}
}
# 定义推理接口
@app.post("/inference/")
async def inference_model(request: Request, features_list: List[Features]):
# 遍历每个特征对象,并将其添加到 all_features 中
all_features = create_feature_df(features_list)
# 读取 YAML 配置文件
with open(config_path, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
feature_names = config['feature_names']
feature_weights = config['feature_weights']
# 应用特征权重
feature_label_weighted = apply_feature_weights(all_features, feature_names, feature_weights)
start_time = time.time() # 记录开始时间
# 创建静态文件存放文件夹
static_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "inference_api")) # 设置模型文件和配置文件的存放目录和本py同级
os.makedirs(static_dir, exist_ok=True)
# 训练前设置
now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
data_path = os.path.abspath(os.path.join(static_dir, f"inference_feature_label_weighted_{now}.xlsx"))
config['data_path'] = data_path
feature_label_weighted.to_excel(data_path, index=False)
# 配置日志
log_path = os.path.abspath(os.path.join(static_dir, f"inference_log_{now}.log"))
logging.basicConfig(filename=log_path, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# 特征和标签
X = feature_label_weighted[config['feature_names']].values
# 初始化 MLModel 实例
ml_model = MLModel(config)
# 加载模型
ml_model.load_model()
predictions = ml_model.inference_model(X)
end_time = time.time() # 记录结束时间
log_print("预测耗时: " + str(end_time - start_time) + "") # 打印执行时间
log_print("预测结果: " + str(predictions))
# 保证日志写到文件
atexit.register(flush_log)
# 返回预测结果
return PredictionResult(predictions=predictions)
# 以下是fastapi启动配置
if __name__ == "__main__":
name_app = os.path.basename(__file__)[0:-3] # Get the name of the script
log_config = {
"version": 1,
"disable_existing_loggers": True,
"handlers": {
"file_handler": {
"class": "logging.FileHandler",
"filename": "logfile.log",
},
},
"root": {
"handlers": ["file_handler"],
"level": "INFO",
},
}
# 创建静态文件存放文件夹
static_dir_train = os.path.abspath(os.path.join(os.path.dirname(__file__), "train_api")) # 设置模型文件和配置文件的存放目录和本py同级
static_dir_evaluate = os.path.abspath(os.path.join(os.path.dirname(__file__), "evaluate_api"))
static_dir_inference = os.path.abspath(os.path.join(os.path.dirname(__file__), "inference_api"))
os.makedirs(static_dir_train, exist_ok=True)
os.makedirs(static_dir_evaluate, exist_ok=True)
os.makedirs(static_dir_inference, exist_ok=True)
# 同级目录下的static文件夹
app.mount("/train_api", StaticFiles(directory=static_dir_train), name="static_dir_train")
app.mount("/evaluate_api", StaticFiles(directory=static_dir_evaluate), name="static_dir_evaluate")
app.mount("/inference_api", StaticFiles(directory=static_dir_inference), name="static_dir_inference")
uvicorn.run(app, host="0.0.0.0", port=3397, reload=False)