|
|
#---设备配置---#
|
|
|
device: cpu
|
|
|
# device: cuda
|
|
|
|
|
|
#---训练配置---#
|
|
|
n_epochs: 150
|
|
|
batch_size: 16
|
|
|
learning_rate: 0.001
|
|
|
nc: 4
|
|
|
#data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练)
|
|
|
data_train: train_val
|
|
|
early_stop_patience: 50
|
|
|
gamma: 0.98
|
|
|
step_size: 10
|
|
|
experimental_mode: false
|
|
|
experiments_count: 50
|
|
|
replace_model: true # 是否替换现有模型
|
|
|
|
|
|
#---检测和推理配置---#
|
|
|
# 检测和推理使用模型路径
|
|
|
model_path: /data/model/psychology.pth
|
|
|
default_model_path: model/psychology.pth
|
|
|
|
|
|
#---样本特征---#
|
|
|
# 标签名称
|
|
|
label_name: 类别
|
|
|
# 特征名称
|
|
|
feature_names:
|
|
|
- "强迫症状数字化"
|
|
|
- "人际关系敏感数字化"
|
|
|
- "抑郁数字化"
|
|
|
- "多因子症状"
|
|
|
- "母亲教养方式数字化"
|
|
|
- "父亲教养方式数字化"
|
|
|
- "自评家庭经济条件数字化"
|
|
|
- "有无心理治疗(咨询)史数字化"
|
|
|
- "学业情况数字化"
|
|
|
- "出勤情况数字化"
|
|
|
# 定义特征权重列表
|
|
|
feature_weights:
|
|
|
- 0.135
|
|
|
- 0.085
|
|
|
- 0.08
|
|
|
- 0.2
|
|
|
- 0.09
|
|
|
- 0.09
|
|
|
- 0.06
|
|
|
- 0.06
|
|
|
- 0.08
|
|
|
- 0.12
|
|
|
|
|
|
#---网络结构---#
|
|
|
# MLP configuration
|
|
|
mlp:
|
|
|
input_dim: 10 # Number of input features
|
|
|
layers:
|
|
|
- output_dim: 32
|
|
|
activation: relu
|
|
|
- output_dim: 128
|
|
|
activation: relu
|
|
|
- output_dim: 32
|
|
|
activation: relu
|
|
|
output_dim: 4 # Number of classes
|
|
|
|
|
|
# Transformer configuration
|
|
|
transformer:
|
|
|
d_model: 32 # Reduced embedding dimension
|
|
|
nhead: 4 # Reduced number of attention heads
|
|
|
num_encoder_layers: 2 # Reduced number of encoder layers
|
|
|
num_decoder_layers: 2 # Reduced number of decoder layers
|
|
|
dim_feedforward: 128 # Reduced feedforward network dimension
|
|
|
dropout: 0.1 # Dropout probability
|
|
|
input_dim: 10 # Number of input features
|
|
|
output_dim: 4 # Number of classes
|
|
|
|
|
|
#---训练配置备份---#
|
|
|
# MLP good train param 1
|
|
|
# #---训练配置---#
|
|
|
# n_epochs: 150
|
|
|
# batch_size: 16
|
|
|
# learning_rate: 0.001
|
|
|
# nc: 4
|
|
|
# #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练)
|
|
|
# data_train: train_val
|
|
|
# early_stop_patience: 50
|
|
|
# gamma: 0.98
|
|
|
# step_size: 10
|
|
|
# experiments_count: 1
|
|
|
|
|
|
# MLP good train param 2
|
|
|
# #---训练配置---#
|
|
|
# n_epochs: 300
|
|
|
# batch_size: 8
|
|
|
# learning_rate: 0.0005
|
|
|
# nc: 4
|
|
|
# #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练)
|
|
|
# data_train: train_val
|
|
|
# early_stop_patience: 50
|
|
|
# gamma: 0.98
|
|
|
# step_size: 10
|
|
|
# experiments_count: 1
|
|
|
|
|
|
# Transformer good train param 1
|
|
|
# #---训练配置---#
|
|
|
# n_epochs: 150
|
|
|
# batch_size: 64
|
|
|
# learning_rate: 0.001
|
|
|
# nc: 4
|
|
|
# #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练)
|
|
|
# data_train: train_val
|
|
|
# early_stop_patience: 50
|
|
|
# gamma: 0.98
|
|
|
# step_size: 10
|
|
|
# experiments_count: 1
|
|
|
|
|
|
# Transformer good train param 2
|
|
|
# #---训练配置---#
|
|
|
# n_epochs: 300
|
|
|
# batch_size: 8
|
|
|
# learning_rate: 0.0005
|
|
|
# nc: 4
|
|
|
# #data_train: train_val # train: 只用train训练,val做验证, infer做测试;train_val: 用train和val做训练,infer做验证, infer做测试;all: 全部训练,全部验证,全部测试(数据先1/5作为infer,剩下的再1/5作为val,剩下的4/5作为训练)
|
|
|
# data_train: train_val
|
|
|
# early_stop_patience: 50
|
|
|
# gamma: 0.98
|
|
|
# step_size: 10
|
|
|
# experiments_count: 1 |