You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
psy/inference_local.py

143 lines
4.5 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
import time
import datetime
import pandas as pd
from typing import List
from common import inference_model
import logging
import numpy as np
import yaml
from feature_process import create_feature_df, apply_feature_weights, Features, process_features_list
# 模拟发送的特征数据
features_data1 = {
"somatization": 0.5,
"obsessive_compulsive": 0.3,
"interpersonal_sensitivity": 0.7,
"depression": 0.6,
"anxiety": 0.8,
"hostility": 0.4,
"terror": 0.2,
"paranoia": 0.1,
"psychoticism": 0.9,
"other": 0.2,
"father_parenting_style": 2,
"mother_parenting_style": 3,
"self_assessed_family_economic_condition": 4,
"history_of_psychological_counseling": 1,
"absenteeism_above_average": True,
"academic_warning": False,
"label": -1
}
features_data2 = {
"somatization": 4.3,
"obsessive_compulsive": 4.1,
"interpersonal_sensitivity": 3.8,
"depression": 4,
"anxiety": 4.2,
"hostility": 4.2,
"terror": 4,
"paranoia": 4.2,
"psychoticism": 3.8,
"other": 3.6,
"father_parenting_style": 1,
"mother_parenting_style": 0,
"self_assessed_family_economic_condition": 0,
"history_of_psychological_counseling": False,
"absenteeism_above_average": True,
"academic_warning": True,
"label": -1
}
features_data3 = {
"somatization": 1.1,
"obsessive_compulsive": 2.3,
"interpersonal_sensitivity": 2.6,
"depression": 2.2,
"anxiety": 1.6,
"hostility": 1.5,
"terror": 1.6,
"paranoia": 1.5,
"psychoticism": 1.2,
"other": 1.3,
"father_parenting_style": 1,
"mother_parenting_style": 1,
"self_assessed_family_economic_condition": 1,
"history_of_psychological_counseling": False,
"absenteeism_above_average": False,
"academic_warning": False,
"label": -1
}
features_data4 = {
"somatization": 1.5,
"obsessive_compulsive": 2.4,
"interpersonal_sensitivity": 2.2,
"depression": 3.2,
"anxiety": 1.6,
"hostility": 1.5,
"terror": 3.1,
"paranoia": 1.5,
"psychoticism": 1.9,
"other": 2.6,
"father_parenting_style": 1,
"mother_parenting_style": 1,
"self_assessed_family_economic_condition": 0,
"history_of_psychological_counseling": False,
"absenteeism_above_average": False,
"academic_warning": False,
"label": -1
}
# 必须是features_list
# features_data_list = [features_data3]
features_data_list = [features_data4, features_data2, features_data3, features_data1]
if __name__ == "__main__":
processed_features_list: List[Features] = process_features_list(features_data_list)
# 特征预处理
all_features = create_feature_df(processed_features_list)
# 读取 YAML 配置文件
config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "train_local.yaml"))
with open(config_path, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
feature_names = config['feature_names']
feature_weights = config['feature_weights']
# 应用特征权重
feature_label_weighted = apply_feature_weights(all_features, feature_names, feature_weights)
start_time = time.time() # 记录开始时间
# 创建静态文件存放文件夹
static_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "evaluate_local")) # 设置模型文件和配置文件的存放目录和本py同级
os.makedirs(static_dir, exist_ok=True)
# 训练前设置
now = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
data_path = os.path.abspath(os.path.join(os.path.dirname(__file__), static_dir, f"all_features_label_{now}.xlsx"))
config['data_path'] = data_path
feature_label_weighted.to_excel(data_path, index=False)
# 配置日志
log_path = os.path.abspath(os.path.join(os.path.dirname(__file__), static_dir, f"evaluate_{now}.log"))
logging.basicConfig(filename=log_path, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# 开始验证
list_avg_f1 = []
list_wrong_percentage = []
list_precision = []
list_recall = []
list_f1 = []
# 特征和标签
X = feature_label_weighted[config['feature_names']].values
y = feature_label_weighted[config['label_name']].values
print(config)
predictions = inference_model(config["model_path"], X, y, config)
end_time = time.time() # 记录结束时间
print("预测耗时:", end_time - start_time, "") # 打印执行时间
print("预测结果:", predictions)