""" 文件名: train_gpu_blance_10features.py 训练部分代码 作者: 王春林 创建日期: 2023年10月18日 最后修改日期: 2023年10月20日 版本号: 1.0.0 """ import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import StratifiedKFold import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset import matplotlib.pyplot as plt from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.utils.class_weight import compute_class_weight # 训练集EXCEL文件名 train_excel = r'train_fold0.xlsx' # 验证集EXCEL文件名 val_excel = r'val_fold0.xlsx' # 检查GPU是否可用 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义 MLP 网络 class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.model = nn.Sequential( nn.Linear(10, 32), # 输入层 nn.ReLU(), # 激活函数 nn.Linear(32, 128), # 隐藏层 nn.ReLU(), # 激活函数 nn.Linear(128, 32), # 隐藏层 nn.ReLU(), # 激活函数 nn.Linear(32, 4), # 输出层,4个类别 ) def forward(self, x): return self.model(x) # 读取特征和标签 train_data = pd.read_excel(train_excel) val_data = pd.read_excel(val_excel) # 以下是你的特征名 feature_names = ["强迫症状数字化", "人际关系敏感数字化", "抑郁数字化", "多因子症状", "母亲教养方式数字化", "父亲教养方式数字化", "自评家庭经济条件数字化", "有无心理治疗(咨询)史数字化", "学业情况数字化", "出勤情况数字化"] # 将特征和标签分开,并做归一化处理 X_train = train_data[feature_names].values y_train = train_data['类别'].values X_val = val_data[feature_names].values y_val = val_data['类别'].values train_dataset = TensorDataset(torch.from_numpy(X_train).float().to(device), torch.from_numpy(y_train).long().to(device)) val_dataset = TensorDataset(torch.from_numpy(X_val).float().to(device), torch.from_numpy(y_val).long().to(device)) train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=16) model = MLP().to(device) #criterion = nn.CrossEntropyLoss() #optimizer = torch.optim.Adam(model.parameters()) #optimizer = torch.optim.Adam(model.parameters(), lr=0.0005, weight_decay=1e-4) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) n_epochs = 150 # 增加到150个epoch train_losses, val_losses, train_accs, val_accs, val_class_precisions, val_class_recalls, val_class_f1_scores = [], [], [], [], [], [], [] # 增加样本平衡机制 class_sample_counts = np.bincount(y_train) class_weights = 1.0 / torch.tensor(class_sample_counts, dtype=torch.float32) class_weights = class_weights.to(device) print(class_sample_counts) print(class_weights) # 计算类别权重 # class_weights = compute_class_weight('balanced', classes=np.unique(y_train), y=y_train) # class_weights = torch.tensor(class_weights, dtype=torch.float32).to(device) # print("class weights: ", class_weights) # additional_weights = torch.tensor([1.0, 1.0, 1.0, 1.0], dtype=torch.float32).to(device) # class_weights *= additional_weights # print("Updated class weights: ", class_weights) # 使用加权交叉熵损失函数 criterion = nn.CrossEntropyLoss(weight=class_weights) #criterion = nn.CrossEntropyLoss() # 存储每一折的模型和对应的验证准确率 best_val_acc = 0.0 best_model = None for epoch in range(n_epochs): model.train() running_loss, corrects = 0, 0 for inputs, targets in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) corrects += torch.sum(preds == targets.data) epoch_loss = running_loss / len(train_loader.dataset) epoch_acc = corrects.double().cpu() / len(train_loader.dataset) train_losses.append(epoch_loss) train_accs.append(epoch_acc) print(f'Fold {+1}, Epoch {epoch+1} | Train Loss: {epoch_loss:.4f} | Train Accuracy: {epoch_acc:.4f}') model.eval() all_preds, all_targets = [], [] running_loss, corrects = 0, 0 with torch.no_grad(): for inputs, targets in val_loader: outputs = model(inputs) loss = criterion(outputs, targets) running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) corrects += torch.sum(preds == targets.data) all_preds.extend(preds.cpu().numpy()) all_targets.extend(targets.cpu().numpy()) class_precisions = precision_score(all_targets, all_preds, average=None) class_recalls = recall_score(all_targets, all_preds, average=None) class_f1_scores = f1_score(all_targets, all_preds, average=None) for i, (precision, recall, f1) in enumerate(zip(class_precisions, class_recalls, class_f1_scores)): print(f'Fold {+1}, Epoch {epoch+1} | Class {i+1} Metrics: Precision={precision:.4f}, Recall={recall:.4f}, F1 Score={f1:.4f}') epoch_loss = running_loss / len(val_loader.dataset) epoch_acc = corrects.double().cpu() / len(val_loader.dataset) val_losses.append(epoch_loss) val_accs.append(epoch_acc) val_class_precisions.append(np.mean(class_precisions)) val_class_recalls.append(np.mean(class_recalls)) val_class_f1_scores.append(np.mean(class_f1_scores)) print(f'Fold {+1}, Epoch {epoch+1} | Validation Loss: {epoch_loss:.4f} | Validation Accuracy: {epoch_acc:.4f}') # 保存最佳模型 if np.mean(class_f1_scores) > best_val_acc: best_val_acc = np.mean(class_f1_scores) best_model = model.state_dict() # 保存每一折的最佳模型 torch.save(best_model, train_excel+f'.pth') # 用于存储所有折的损失和准确率 all_train_losses, all_val_losses, all_train_accs, all_val_accs, all_class_precisions, all_class_f1_scores, all_class_recalls = [], [], [], [], [], [], [] all_train_losses.append(train_losses) all_val_losses.append(val_losses) all_train_accs.append(train_accs) all_val_accs.append(val_accs) all_class_precisions.append(val_class_precisions) all_class_recalls.append(val_class_recalls) all_class_f1_scores.append(val_class_f1_scores) print(f'All Fold Average | Train Loss: {np.mean(all_train_losses, axis=0)[-1].item():.4f} | Train Accuracy: {np.mean(all_train_accs, axis=0)[-1].item():.4f} | Validation Loss: {np.mean(all_val_losses, axis=0)[-1].item():.4f} | Validation Accuracy: {np.mean(all_val_accs, axis=0)[-1].item():.4f} | Validation Precision: {np.mean(all_class_precisions, axis=0)[-1].item():.4f} | Validation Recall: {np.mean(all_class_recalls, axis=0)[-1].item():.4f} | Validation F1_score: {np.mean(all_class_f1_scores, axis=0)[-1].item():.4f}') # all_train_losses=train_losses # all_val_losses=val_losses # all_train_accs=train_accs # all_val_accs=val_accs # all_class_precisions=val_class_precisions # all_class_recalls=val_class_recalls # all_class_f1_scores=val_class_f1_scores # print(f'All Fold Average | Train Loss: {all_train_losses:.4f} | Train Accuracy: {all_train_accs:.4f} | Validation Loss: {all_val_losses:.4f} | Validation Accuracy: {all_val_accs:.4f} | Validation Precision: {all_class_precisions:.4f} | Validation Recall: {all_class_recalls:.4f} | Validation F1_score: {all_class_f1_scores:.4f}') # 绘制所有折的平均损失和准确率曲线 plt.figure(figsize=(12, 4)) plt.subplot(3, 2, 1) plt.plot(range(n_epochs), np.mean(all_train_losses, axis=0), label='Train Loss') plt.plot(range(n_epochs), np.mean(all_val_losses, axis=0), label='Validation Loss') plt.legend() plt.title('Loss') plt.subplot(3, 2, 2) plt.plot(range(n_epochs), np.mean(all_train_accs, axis=0), label='Train Accuracy') plt.plot(range(n_epochs), np.mean(all_val_accs, axis=0), label='Validation Accuracy') plt.legend() plt.title('Accuracy') plt.subplot(3, 2, 3) plt.plot(range(n_epochs), np.mean(all_class_precisions, axis=0), label='Validation Precision') plt.legend() plt.title('Precision') plt.subplot(3, 2, 4) plt.plot(range(n_epochs), np.mean(all_class_recalls, axis=0), label='Validation Recall') plt.legend() plt.title('Recall') plt.subplot(3, 2, 5) plt.plot(range(n_epochs), np.mean(all_class_f1_scores, axis=0), label='Validation F1_score') plt.legend() plt.title('F1_score') plt.show()