import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import StratifiedKFold import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset import matplotlib.pyplot as plt # 检查GPU是否可用 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 读取特征和标签 data = pd.read_excel('feature_label.xlsx') # 以下是你的特征名 feature_names = ["躯体化", "强迫症状", "人际关系敏感", "抑郁", "焦虑", "敌对", "恐怖", "偏执", "精神病性", "其他", "父亲教养方式数字化", "母亲教养方式数字化", "自评家庭经济条件数字化", "有无心理治疗(咨询)史数字化", "出勤情况数字化", "学业情况数字化", "权重数字化值"] # 将特征和标签分开,并做归一化处理 X = data[feature_names].values y = data['label'].values - 1 # 将标签从1-4转换为0-3 scaler = MinMaxScaler() X = scaler.fit_transform(X) # 定义 MLP 网络 class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.model = nn.Sequential( nn.Linear(17, 32), # 输入层 nn.ReLU(), # 激活函数 nn.Linear(32, 128), # 隐藏层 nn.ReLU(), # 激活函数 nn.Linear(128, 32), # 隐藏层 nn.ReLU(), # 激活函数 nn.Linear(32, 4), # 输出层,4个类别 ) def forward(self, x): return self.model(x) # 使用5折交叉验证 skf = StratifiedKFold(n_splits=5, shuffle=True) # 用于存储所有折的损失和准确率 all_train_losses, all_val_losses, all_train_accs, all_val_accs = [], [], [], [] for fold, (train_index, test_index) in enumerate(skf.split(X, y)): X_train, X_val = X[train_index], X[test_index] y_train, y_val = y[train_index], y[test_index] train_dataset = TensorDataset(torch.from_numpy(X_train).float().to(device), torch.from_numpy(y_train).long().to(device)) val_dataset = TensorDataset(torch.from_numpy(X_val).float().to(device), torch.from_numpy(y_val).long().to(device)) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=32) model = MLP().to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) n_epochs = 120 # 增加到150个epoch train_losses, val_losses, train_accs, val_accs = [], [], [], [] for epoch in range(n_epochs): model.train() running_loss, corrects = 0, 0 for inputs, targets in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) corrects += torch.sum(preds == targets.data) epoch_loss = running_loss / len(train_loader.dataset) epoch_acc = corrects.double().cpu() / len(train_loader.dataset) train_losses.append(epoch_loss) train_accs.append(epoch_acc) print(f'Fold {fold+1}, Epoch {epoch+1} | Train Loss: {epoch_loss:.4f} | Train Accuracy: {epoch_acc:.4f}') model.eval() running_loss, corrects = 0, 0 with torch.no_grad(): for inputs, targets in val_loader: outputs = model(inputs) loss = criterion(outputs, targets) running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) corrects += torch.sum(preds == targets.data) epoch_loss = running_loss / len(val_loader.dataset) epoch_acc = corrects.double().cpu() / len(val_loader.dataset) val_losses.append(epoch_loss) val_accs.append(epoch_acc) print(f'Fold {fold+1}, Epoch {epoch+1} | Validation Loss: {epoch_loss:.4f} | Validation Accuracy: {epoch_acc:.4f}') all_train_losses.append(train_losses) all_val_losses.append(val_losses) all_train_accs.append(train_accs) all_val_accs.append(val_accs) # 绘制所有折的平均损失和准确率曲线 plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(range(n_epochs), np.mean(all_train_losses, axis=0), label='Train Loss') plt.plot(range(n_epochs), np.mean(all_val_losses, axis=0), label='Validation Loss') plt.legend() plt.title('Loss') plt.subplot(1, 2, 2) plt.plot(range(n_epochs), np.mean(all_train_accs, axis=0), label='Train Accuracy') plt.plot(range(n_epochs), np.mean(all_val_accs, axis=0), label='Validation Accuracy') plt.legend() plt.title('Accuracy') print(f'All Fold Average | Train Loss: {np.mean(all_train_losses, axis=0)[-1].item():.4f} | Train Accuracy: {np.mean(all_train_accs, axis=0)[-1].item():.4f} | Validation Loss: {np.mean(all_val_losses, axis=0)[-1].item():.4f} | Validation Accuracy: {np.mean(all_val_accs, axis=0)[-1].item():.4f}') plt.show()