You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

84 lines
2.5 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

"""
文件名: train_gpu_blance_10features.py
训练部分代码
作者: 王春林
创建日期: 2023年10月18日
最后修改日期: 2023年10月20日
版本号: 1.0.0
"""
import numpy as np
import torch
from torch import nn
# 定义 MLP 网络
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
nn.Linear(10, 32), # 输入层
nn.ReLU(), # 激活函数
nn.Linear(32, 128), # 隐藏层
nn.ReLU(), # 激活函数
nn.Linear(128, 32), # 隐藏层
nn.ReLU(), # 激活函数
nn.Linear(32, 4), # 输出层4个类别
)
def forward(self, x):
return self.model(x)
# 检查GPU是否可用
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
def predict_with_model(data):
# # 读取特征和标签
# data = pd.read_excel('feature_label.xlsx')
# 以下是你的特征名
feature_names = ["强迫症状数字化", "人际关系敏感数字化", "抑郁数字化", "多因子症状", "母亲教养方式数字化", "父亲教养方式数字化", "自评家庭经济条件数字化", "有无心理治疗(咨询)史数字化", "学业情况数字化", "出勤情况数字化"]
# 定义特征权重列表
feature_weights = [0.135, 0.085, 0.08, 0.2, 0.09, 0.09, 0.06, 0.06, 0.08, 0.12]
# 找到最大值
max_value = max(feature_weights)
# 缩放权重
feature_weights_scaled = [x / max_value for x in feature_weights]
# 打印缩放后的特征权重
# print("Scaled Feature Weights:", feature_weights_scaled)
# 将特征和标签分开,并做归一化处理
X = data[feature_names].values
# 分别乘以权重,放在归一化后
for i in range(len(feature_names)):
X[:, i] = X[:, i] * feature_weights_scaled[i]
model = MLP().to(device)
model.load_state_dict(torch.load('psychology.pth', map_location=device))
model.eval()
# 转换输入数据为 Tensor并放到设备上
X_tensor = torch.from_numpy(X).float().to(device)
# 推理
with torch.no_grad():
outputs = model(X_tensor)
# 获取预测结果
_, predictions = torch.max(outputs, 1)
# 实际类别从1开始程序类别从0开始
predictions += 1
# 打印预测结果
# print("预测结果:", predictions.cpu().numpy())
# 返回预测结果
return predictions.cpu().numpy().tolist()