You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

80 lines
2.2 KiB
Python

import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.utils.data import Dataset, DataLoader
# Define MLP model
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.sigmoid(out)
return out
# Define custom dataset
class PsychologyDataset(Dataset):
def __init__(self, data_file):
self.data = pd.read_excel(data_file)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
features = self.data.iloc[idx, 36:43].values.astype(np.float32)
str = self.data.iloc[idx, -1]
#print(idx,str,self.data.iloc[0, 0])
label = -1
if(str==""):
label = 1
else:
label = 0
#print(features)
label = np.float32(label)
#return torch.tensor(features, dtype=torch.float), label
return features, label
# Set hyperparameters
input_size = 7
hidden_size = 16
output_size = 1
lr = 0.01
num_epochs = 100
# Load data
dataset = PsychologyDataset("data/data_src.xlsx")
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
# Instantiate model, loss function, and optimizer
model = MLP(input_size, hidden_size, output_size)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# Train model
for epoch in range(num_epochs):
running_loss = 0.0
#print(type(dataloader))
for i, data in enumerate(dataloader):
#print("数据序号:", i, data)
#continue
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels.unsqueeze(1))
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, running_loss / len(dataloader)))
# Save trained model
torch.save(model.state_dict(), 'psychology_model.pth')