Updating documentation (#3800)

* update docs

* update README.md

* fix mistake

* update CHANGELOG.md and fix remark issues

* cancel change backup_guide.md
main
Timur Osmanov 4 years ago committed by GitHub
parent 0faba29b71
commit 584392aafa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -13,6 +13,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- interactor: add HRNet interactive segmentation serverless function (<https://github.com/openvinotoolkit/cvat/pull/3740>) - interactor: add HRNet interactive segmentation serverless function (<https://github.com/openvinotoolkit/cvat/pull/3740>)
- Added GPU implementation for SiamMask, reworked tracking approach (<https://github.com/openvinotoolkit/cvat/pull/3571>) - Added GPU implementation for SiamMask, reworked tracking approach (<https://github.com/openvinotoolkit/cvat/pull/3571>)
- Progress bar for manifest creating (<https://github.com/openvinotoolkit/cvat/pull/3712>) - Progress bar for manifest creating (<https://github.com/openvinotoolkit/cvat/pull/3712>)
- Add a tutorial on attaching cloud storage AWS-S3 (<https://github.com/openvinotoolkit/cvat/pull/3745>)
and Azure Blob Container (<https://github.com/openvinotoolkit/cvat/pull/3778>)
### Changed ### Changed

@ -86,7 +86,7 @@ For more information about supported formats look at the
| [Object reidentification](/serverless/openvino/omz/intel/person-reidentification-retail-300/nuclio) | reid | OpenVINO | X | | | [Object reidentification](/serverless/openvino/omz/intel/person-reidentification-retail-300/nuclio) | reid | OpenVINO | X | |
| [Semantic segmentation for ADAS](/serverless/openvino/omz/intel/semantic-segmentation-adas-0001/nuclio) | detector | OpenVINO | X | | | [Semantic segmentation for ADAS](/serverless/openvino/omz/intel/semantic-segmentation-adas-0001/nuclio) | detector | OpenVINO | X | |
| [Text detection v4](/serverless/openvino/omz/intel/text-detection-0004/nuclio) | detector | OpenVINO | X | | | [Text detection v4](/serverless/openvino/omz/intel/text-detection-0004/nuclio) | detector | OpenVINO | X | |
| [SiamMask](/serverless/pytorch/foolwood/siammask/nuclio) | tracker | PyTorch | X | | | [SiamMask](/serverless/pytorch/foolwood/siammask/nuclio) | tracker | PyTorch | X | X |
| [f-BRS](/serverless/pytorch/saic-vul/fbrs/nuclio) | interactor | PyTorch | X | | | [f-BRS](/serverless/pytorch/saic-vul/fbrs/nuclio) | interactor | PyTorch | X | |
| [HRNet](/serverless/pytorch/saic-vul/hrnet/nuclio) | interactor | PyTorch | | X | | [HRNet](/serverless/pytorch/saic-vul/hrnet/nuclio) | interactor | PyTorch | | X |
| [Inside-Outside Guidance](/serverless/pytorch/shiyinzhang/iog/nuclio) | interactor | PyTorch | X | | | [Inside-Outside Guidance](/serverless/pytorch/shiyinzhang/iog/nuclio) | interactor | PyTorch | X | |

@ -38,7 +38,7 @@ description: 'Information about the installation of components needed for semi-a
wget https://github.com/nuclio/nuclio/releases/download/<version>/nuctl-<version>-linux-amd64 wget https://github.com/nuclio/nuclio/releases/download/<version>/nuctl-<version>-linux-amd64
``` ```
After downloading the nuclio, give it a proper permission and do a softlink After downloading the nuclio, give it a proper permission and do a softlink.
``` ```
sudo chmod +x nuctl-<version>-linux-amd64 sudo chmod +x nuctl-<version>-linux-amd64
@ -94,7 +94,7 @@ description: 'Information about the installation of components needed for semi-a
- The number of GPU deployed functions will be limited to your GPU memory. - The number of GPU deployed functions will be limited to your GPU memory.
- See [deploy_gpu.sh](https://github.com/openvinotoolkit/cvat/blob/develop/serverless/deploy_gpu.sh) - See [deploy_gpu.sh](https://github.com/openvinotoolkit/cvat/blob/develop/serverless/deploy_gpu.sh)
script for more examples. script for more examples.
- For some models (namely [SiamMask](/docs/manual/advanced/ai-tools#trackers) you need an [Nvidia driver](https://www.nvidia.com/en-us/drivers/unix/) - For some models (namely [SiamMask](/docs/manual/advanced/ai-tools#trackers)) you need an [Nvidia driver](https://www.nvidia.com/en-us/drivers/unix/)
version greater than or equal to 450.80.02. version greater than or equal to 450.80.02.
**Note for Windows users:** **Note for Windows users:**

@ -205,9 +205,9 @@ Follow the first 7 mounting steps above.
1. Edit `/etc/fstab` with the blobfuse script. Add the following line(replace paths): 1. Edit `/etc/fstab` with the blobfuse script. Add the following line(replace paths):
```bash ```bash
/absolute/path/to/azure_fuse </path/to/desired/mountpoint> fuse allow_other,user,_netdev /absolute/path/to/azure_fuse </path/to/desired/mountpoint> fuse allow_other,user,_netdev
``` ```
##### <a name="azure_using_systemd">Using systemd</a> ##### <a name="azure_using_systemd">Using systemd</a>

@ -8,17 +8,21 @@ This section contains basic information and links to sections necessary for a qu
## Installation ## Installation
First step is to install CVAT on your system. Use the [Installation Guide](/docs/administration/basics/installation/). First step is to install CVAT on your system:
- [Installation on Ubuntu](/docs/administration/basics/installation/#ubuntu-1804-x86_64amd64)
- [Installation on Windows 10](/docs/administration/basics/installation/#windows-10)
- [Installation on Mac OS](/docs/administration/basics/installation/#mac-os-mojave)
## Getting started in CVAT To learn how to create a superuser and log in to CVAT,
go to the [authorization](/docs/manual/basics/authorization/) section.
To find out more, go to the [authorization](/docs/manual/basics/authorization/) section. ## Getting started in CVAT
To create a task, go to `Tasks` section. Click `Create new task` to go to the task creation page. To create a task, go to `Tasks` section. Click `Create new task` to go to the task creation page.
Set the name of the future task. Set the name of the future task.
Set the label using the constructor: first click "add label", then enter the name of the label and choose the color. Set the label using the constructor: first click `Add label`, then enter the name of the label and choose the color.
![](/images/create_a_new_task.gif) ![](/images/create_a_new_task.gif)
@ -26,10 +30,12 @@ You need to upload images or videos for your future annotation. To do so, simply
To learn more, go to [creating an annotation task](/docs/manual/basics/creating_an_annotation_task/) To learn more, go to [creating an annotation task](/docs/manual/basics/creating_an_annotation_task/)
## Basic annotation ## Annotation
### Basic
When the task is created, you will see a corresponding message in the top right corner. When the task is created, you will see a corresponding message in the top right corner.
Click the "Open task" button to go to the task page. Click the `Open task` button to go to the task page.
Once on the task page, open a link to the job in the jobs list. Once on the task page, open a link to the job in the jobs list.
@ -44,16 +50,24 @@ Choose a correct section for your type of the task and start annotation.
| Cuboids | [Annotation with cuboids](/docs/manual/advanced/annotation-with-cuboids/) | [Editing the cuboid](/docs/manual/advanced/annotation-with-cuboids/editing-the-cuboid/) | | Cuboids | [Annotation with cuboids](/docs/manual/advanced/annotation-with-cuboids/) | [Editing the cuboid](/docs/manual/advanced/annotation-with-cuboids/editing-the-cuboid/) |
| Tag | [Annotation with tags](/docs/manual/advanced/annotation-with-tags/) | | | Tag | [Annotation with tags](/docs/manual/advanced/annotation-with-tags/) | |
### Advanced
In CVAT there is the possibility of using automatic and semi-automatic annotation what gives
you the opportunity to speed up the execution of the annotation:
- [OpenCV tools](/docs/manual/advanced/opencv-tools/) - tools included in CVAT by default.
- [AI tools](/docs/manual/advanced/ai-tools/) - tools requiring installation.
- [Automatic annotation](/docs/manual/advanced/automatic-annotation/) - automatic annotation with using DL models.
## Dump annotation ## Dump annotation
![](/images/image028.jpg) ![](/images/image028.jpg)
1. To download the annotations, first you have to save all changes. 1. To download the annotations, first you have to save all changes.
Click the Save button or press `Ctrl+S`to save annotations quickly. Click the `Save` button or press `Ctrl+S`to save annotations quickly.
2. After you saved the changes, click the Menu button. 2. After you saved the changes, click the `Menu` button.
3. Then click the Dump Annotation button. 3. Then click the `Dump Annotation` button.
4. Lastly choose a format of the dump annotation file. 4. Lastly choose a format of the dump annotation file.

@ -4,6 +4,10 @@ linkTitle: 'Models'
weight: 13 weight: 13
--- ---
To deploy the models, you will need to install the necessary components using
[Semi-automatic and Automatic Annotation guide](/docs/administration/advanced/installation_automatic_annotation/).
To learn how to deploy the model, read [Serverless tutorial](/docs/manual/advanced/serverless-tutorial/).
The Models page contains a list of deep learning (DL) models deployed for semi-automatic and automatic annotation. The Models page contains a list of deep learning (DL) models deployed for semi-automatic and automatic annotation.
To open the Models page, click the Models button on the navigation bar. To open the Models page, click the Models button on the navigation bar.
The list of models is presented in the form of a table. The parameters indicated for each model are the following: The list of models is presented in the form of a table. The parameters indicated for each model are the following:
@ -20,5 +24,3 @@ The list of models is presented in the form of a table. The parameters indicated
- `Labels` - list of the supported labels (only for the models of the `detectors` type) - `Labels` - list of the supported labels (only for the models of the `detectors` type)
![](/images/image099.jpg) ![](/images/image099.jpg)
Read how to install your model [here](/docs/administration/basics/installation/#semi-automatic-and-automatic-annotation).

Binary file not shown.

Before

Width:  |  Height:  |  Size: 374 KiB

After

Width:  |  Height:  |  Size: 423 KiB

Loading…
Cancel
Save