Faster R-CNN with Inception v2 for auto annotation (#541)
parent
418cdbe146
commit
cd5d43136d
@ -0,0 +1,6 @@
|
||||
# Faster R-CNN with Inception v2 (https://arxiv.org/pdf/1801.04381.pdf) pre-trained on the COCO dataset
|
||||
|
||||
### What is it?
|
||||
* This application allows you automatically to annotate many various objects on images.
|
||||
* It uses [Faster RCNN Inception Resnet v2 Atrous Coco Model](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) from [tensorflow detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md)
|
||||
* It can work on CPU (with Tensorflow or OpenVINO) or GPU (with Tensorflow GPU).
|
||||
@ -0,0 +1,19 @@
|
||||
threshold = .5
|
||||
|
||||
for detection in detections:
|
||||
frame_number = detection['frame_id']
|
||||
height = detection['frame_height']
|
||||
width = detection['frame_width']
|
||||
detection = detection['detections']
|
||||
|
||||
prediction = detection[0][0]
|
||||
for obj in prediction:
|
||||
obj_class = int(obj[1])
|
||||
obj_value = obj[2]
|
||||
if obj_value >= threshold:
|
||||
x = obj[3] * width
|
||||
y = obj[4] * height
|
||||
right = obj[5] * width
|
||||
bottom = obj[6] * height
|
||||
|
||||
results.add_box(x, y, right, bottom, obj_class, frame_number)
|
||||
@ -0,0 +1,84 @@
|
||||
{
|
||||
"label_map": {
|
||||
"1": "person",
|
||||
"2": "bicycle",
|
||||
"3": "car",
|
||||
"4": "motorcycle",
|
||||
"5": "airplane",
|
||||
"6": "bus",
|
||||
"7": "train",
|
||||
"8": "truck",
|
||||
"9": "boat",
|
||||
"10": "traffic_light",
|
||||
"11": "fire_hydrant",
|
||||
"13": "stop_sign",
|
||||
"14": "parking_meter",
|
||||
"15": "bench",
|
||||
"16": "bird",
|
||||
"17": "cat",
|
||||
"18": "dog",
|
||||
"19": "horse",
|
||||
"20": "sheep",
|
||||
"21": "cow",
|
||||
"22": "elephant",
|
||||
"23": "bear",
|
||||
"24": "zebra",
|
||||
"25": "giraffe",
|
||||
"27": "backpack",
|
||||
"28": "umbrella",
|
||||
"31": "handbag",
|
||||
"32": "tie",
|
||||
"33": "suitcase",
|
||||
"34": "frisbee",
|
||||
"35": "skis",
|
||||
"36": "snowboard",
|
||||
"37": "sports_ball",
|
||||
"38": "kite",
|
||||
"39": "baseball_bat",
|
||||
"40": "baseball_glove",
|
||||
"41": "skateboard",
|
||||
"42": "surfboard",
|
||||
"43": "tennis_racket",
|
||||
"44": "bottle",
|
||||
"46": "wine_glass",
|
||||
"47": "cup",
|
||||
"48": "fork",
|
||||
"49": "knife",
|
||||
"50": "spoon",
|
||||
"51": "bowl",
|
||||
"52": "banana",
|
||||
"53": "apple",
|
||||
"54": "sandwich",
|
||||
"55": "orange",
|
||||
"56": "broccoli",
|
||||
"57": "carrot",
|
||||
"58": "hot_dog",
|
||||
"59": "pizza",
|
||||
"60": "donut",
|
||||
"61": "cake",
|
||||
"62": "chair",
|
||||
"63": "couch",
|
||||
"64": "potted_plant",
|
||||
"65": "bed",
|
||||
"67": "dining_table",
|
||||
"70": "toilet",
|
||||
"72": "tv",
|
||||
"73": "laptop",
|
||||
"74": "mouse",
|
||||
"75": "remote",
|
||||
"76": "keyboard",
|
||||
"77": "cell_phone",
|
||||
"78": "microwave",
|
||||
"79": "oven",
|
||||
"80": "toaster",
|
||||
"81": "sink",
|
||||
"83": "refrigerator",
|
||||
"84": "book",
|
||||
"85": "clock",
|
||||
"86": "vase",
|
||||
"87": "scissors",
|
||||
"88": "teddy_bear",
|
||||
"89": "hair_drier",
|
||||
"90": "toothbrush"
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue