Faster R-CNN with Inception v2 for auto annotation (#541)

main
Ben Hoff 7 years ago committed by Nikita Manovich
parent 418cdbe146
commit cd5d43136d

@ -0,0 +1,6 @@
# Faster R-CNN with Inception v2 (https://arxiv.org/pdf/1801.04381.pdf) pre-trained on the COCO dataset
### What is it?
* This application allows you automatically to annotate many various objects on images.
* It uses [Faster RCNN Inception Resnet v2 Atrous Coco Model](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) from [tensorflow detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md)
* It can work on CPU (with Tensorflow or OpenVINO) or GPU (with Tensorflow GPU).

@ -0,0 +1,19 @@
threshold = .5
for detection in detections:
frame_number = detection['frame_id']
height = detection['frame_height']
width = detection['frame_width']
detection = detection['detections']
prediction = detection[0][0]
for obj in prediction:
obj_class = int(obj[1])
obj_value = obj[2]
if obj_value >= threshold:
x = obj[3] * width
y = obj[4] * height
right = obj[5] * width
bottom = obj[6] * height
results.add_box(x, y, right, bottom, obj_class, frame_number)

@ -0,0 +1,84 @@
{
"label_map": {
"1": "person",
"2": "bicycle",
"3": "car",
"4": "motorcycle",
"5": "airplane",
"6": "bus",
"7": "train",
"8": "truck",
"9": "boat",
"10": "traffic_light",
"11": "fire_hydrant",
"13": "stop_sign",
"14": "parking_meter",
"15": "bench",
"16": "bird",
"17": "cat",
"18": "dog",
"19": "horse",
"20": "sheep",
"21": "cow",
"22": "elephant",
"23": "bear",
"24": "zebra",
"25": "giraffe",
"27": "backpack",
"28": "umbrella",
"31": "handbag",
"32": "tie",
"33": "suitcase",
"34": "frisbee",
"35": "skis",
"36": "snowboard",
"37": "sports_ball",
"38": "kite",
"39": "baseball_bat",
"40": "baseball_glove",
"41": "skateboard",
"42": "surfboard",
"43": "tennis_racket",
"44": "bottle",
"46": "wine_glass",
"47": "cup",
"48": "fork",
"49": "knife",
"50": "spoon",
"51": "bowl",
"52": "banana",
"53": "apple",
"54": "sandwich",
"55": "orange",
"56": "broccoli",
"57": "carrot",
"58": "hot_dog",
"59": "pizza",
"60": "donut",
"61": "cake",
"62": "chair",
"63": "couch",
"64": "potted_plant",
"65": "bed",
"67": "dining_table",
"70": "toilet",
"72": "tv",
"73": "laptop",
"74": "mouse",
"75": "remote",
"76": "keyboard",
"77": "cell_phone",
"78": "microwave",
"79": "oven",
"80": "toaster",
"81": "sink",
"83": "refrigerator",
"84": "book",
"85": "clock",
"86": "vase",
"87": "scissors",
"88": "teddy_bear",
"89": "hair_drier",
"90": "toothbrush"
}
}
Loading…
Cancel
Save