Update COCO documentation (#4908)

main
Anastasia Yasakova 3 years ago committed by GitHub
parent f9a2e27223
commit aed6de5ce3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -26,7 +26,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
Skeleton (<https://github.com/cvat-ai/cvat/pull/1>), (<https://github.com/opencv/cvat/pull/4829>) Skeleton (<https://github.com/cvat-ai/cvat/pull/1>), (<https://github.com/opencv/cvat/pull/4829>)
- Added helm chart support for serverless functions and analytics (<https://github.com/cvat-ai/cvat/pull/110>) - Added helm chart support for serverless functions and analytics (<https://github.com/cvat-ai/cvat/pull/110>)
- Added confirmation when remove a track (<https://github.com/opencv/cvat/pull/4846>) - Added confirmation when remove a track (<https://github.com/opencv/cvat/pull/4846>)
- [COCO Keypoints](https://cocodataset.org/#keypoints-2020) format support (<https://github.com/opencv/cvat/pull/4821>) - [COCO Keypoints](https://cocodataset.org/#keypoints-2020) format support (<https://github.com/opencv/cvat/pull/4821>,
<https://github.com/opencv/cvat/pull/4908>)
- Support for Oracle OCI Buckets (<https://github.com/opencv/cvat/pull/4876>) - Support for Oracle OCI Buckets (<https://github.com/opencv/cvat/pull/4876>)
- `cvat-sdk` and `cvat-cli` packages on PyPI (<https://github.com/opencv/cvat/pull/4903>) - `cvat-sdk` and `cvat-cli` packages on PyPI (<https://github.com/opencv/cvat/pull/4903>)

@ -125,6 +125,7 @@ For more information about the supported formats, look at the
| Segmentation masks from [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) | ✔️ | ✔️ | | Segmentation masks from [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) | ✔️ | ✔️ |
| [YOLO](https://pjreddie.com/darknet/yolo/) | ✔️ | ✔️ | | [YOLO](https://pjreddie.com/darknet/yolo/) | ✔️ | ✔️ |
| [MS COCO Object Detection](http://cocodataset.org/#format-data) | ✔️ | ✔️ | | [MS COCO Object Detection](http://cocodataset.org/#format-data) | ✔️ | ✔️ |
| [MS COCO Keypoints Detection](http://cocodataset.org/#format-data) | ✔️ | ✔️ |
| [TFrecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) | ✔️ | ✔️ | | [TFrecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) | ✔️ | ✔️ |
| [MOT](https://motchallenge.net/) | ✔️ | ✔️ | | [MOT](https://motchallenge.net/) | ✔️ | ✔️ |
| [LabelMe 3.0](http://labelme.csail.mit.edu/Release3.0) | ✔️ | ✔️ | | [LabelMe 3.0](http://labelme.csail.mit.edu/Release3.0) | ✔️ | ✔️ |

@ -41,6 +41,32 @@ Uploaded file: a single unpacked `*.json` or a zip archive with the structure de
- supported annotations: Polygons, Rectangles (if the `segmentation` field is empty) - supported annotations: Polygons, Rectangles (if the `segmentation` field is empty)
# [MS COCO Keypoint Detection](https://cocodataset.org/#keypoints-2020)
- [Format specification](https://openvinotoolkit.github.io/datumaro/docs/formats/coco/)
## COCO export
Downloaded file: a zip archive with the structure described [here](https://openvinotoolkit.github.io/datumaro/docs/formats/coco/#import-coco-dataset)
- supported annotations: Skeletons
- supported attributes:
- `is_crowd` (checkbox or integer with values 0 and 1) -
specifies that the instance (an object group) should have an
RLE-encoded mask in the `segmentation` field. All the grouped shapes
are merged into a single mask, the largest one defines all
the object properties
- `score` (number) - the annotation `score` field
- arbitrary attributes - will be stored in the `attributes` annotation section
## COCO import
Uploaded file: a single unpacked `*.json` or a zip archive with the structure described
[here](https://openvinotoolkit.github.io/datumaro/docs/formats/coco/#import-coco-dataset)
(without images).
- supported annotations: Skeletons
## How to create a task from MS COCO dataset ## How to create a task from MS COCO dataset
1. Download the [MS COCO dataset](https://openvinotoolkit.github.io/datumaro/docs/formats/coco/#import-coco-dataset). 1. Download the [MS COCO dataset](https://openvinotoolkit.github.io/datumaro/docs/formats/coco/#import-coco-dataset).

Loading…
Cancel
Save